本文整理汇总了Python中matplotlib.pyplot.yscale函数的典型用法代码示例。如果您正苦于以下问题:Python yscale函数的具体用法?Python yscale怎么用?Python yscale使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了yscale函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setDiffsPlot
def setDiffsPlot(CF,d0,ySym = True):
CFtext = [str(j)+',' for j in CF]
bText = [CFtext[0],r'...,$a_i$+c,...',CFtext[-1]]
CFtext = ''.join(CFtext)
bText= ''.join(bText)
CFtext = '[' + CFtext[:-1] + ']'
bText = '[' + bText[:-1] + ']'
print(CFtext)
plt.ylabel(r'$d^{crit}_b - d^{crit}_a$',fontsize=20)
plt.xlabel(r'Element changed',fontsize=20)
xmin, xmax, ymin, ymax = plt.axis()
if ySym:
plt.yscale('symlog',linthreshy=1e-15)
yLoc = [y*ymax for y in [.1, .01, .001]]
else:
yLoc = [y*(ymax-ymin)+ymin for y in [0.95, 0.85, 0.75]]
plt.plot([0,xmax],[0,0],'k--',label='_')
plt.text((xmax-xmin)*0.15,yLoc[0],r'$a = [a_i] =$'+CFtext,fontsize=15)
plt.text((xmax-xmin)*0.15,yLoc[1],r'$b_i = $'+bText,fontsize=15)
plt.text((xmax-xmin)*0.15,yLoc[2],r'$d_a^{crit} = $'+str(float(d0)),fontsize=15)
plt.legend(loc='best')
plt.xscale('symlog',linthreshx=1e-14)
# plt.yscale('log')
plt.show()
示例2: plot_probability_calibration_curves
def plot_probability_calibration_curves(self):
""" Compute true and predicted probabilities for a calibration plot
fraction_of_positives - The true probability in each bin (fraction of positives).
mean_predicted_value - The mean predicted probability in each bin.
"""
fig = plt.figure()
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0), rowspan=2)
ax1.set_ylabel("Fraction of positives")
ax1.set_ylim([-0.05, 1.05])
ax1.legend(loc="lower right")
ax1.set_title('Calibration plots (reliability curve) ' + self.description)
ax2.set_xlabel("Mean predicted value")
ax2.set_ylabel("Count")
ax2.legend(loc="upper center", ncol=2)
clf_score = brier_score_loss(self.y_true, self.y_pred, pos_label=1)
fraction_of_positives, mean_predicted_value = calibration_curve(self.y_true, self.y_pred, n_bins=50)
ax1.plot(mean_predicted_value, fraction_of_positives, "s-", color="#660066", alpha = 0.6, label="%s (%1.3f)" % (self.description, clf_score))
ax2.hist(self.y_pred, range=(0, 1), bins=50, color="#660066", linewidth=2.0 , alpha = 0.6, label="%s (%1.3f)" % (self.description, clf_score), histtype="step", lw=2)
plt.yscale('log')
return
示例3: plot_max_avg_Rho_lev012
def plot_max_avg_Rho_lev012(lev0,lev1,lev2, ic, spath):
'''lev -- TimeProfQs() object, whose lev.convert() attribute has been called'''
#avgRho
Tratio = lev0.t / ic.tCr
fig, ax = plt.subplots()
#initial
plt.hlines(ic.rho0, Tratio.min(),Tratio.max(), colors="magenta", linestyles='dashed',label="initial")
#lev0
plt.plot(Tratio,lev0.maxRho,ls="-",c="black",lw=2.,label="max Lev0")
plt.plot(Tratio,lev0.minRho,ls="-",c="green",lw=2.,label="min Lev0")
plt.plot(Tratio,lev0.avgRho,ls="-",c="blue",lw=2.,label="avg Lev0")
plt.plot(Tratio,lev0.avgRho_HiPa,ls="-",c="red",lw=2.,label=r"avg ($\rho > \rho_0$)")
#lev1
plt.plot(Tratio,lev1.maxRho,ls="--",c="black",lw=2.,label="max Lev1")
plt.plot(Tratio,lev1.minRho,ls="--",c="green",lw=2.,label="min Lev1")
plt.plot(Tratio,lev1.avgRho,ls="--",c="blue",lw=2.,label="avg Lev1")
plt.plot(Tratio,lev1.avgRho_HiPa,ls="--",c="red",lw=2.,label=r"avg Lev1 ($\rho > \rho_0$)")
#lev2
plt.plot(Tratio,lev2.maxRho,ls=":",c="black",lw=2.,label="max Lev2")
plt.plot(Tratio,lev2.minRho,ls=":",c="green",lw=2.,label="min Lev2")
plt.plot(Tratio,lev2.avgRho,ls=":",c="blue",lw=2.,label="avg Lev2")
plt.plot(Tratio,lev0.avgRho_HiPa,ls=":",c="red",lw=2.,label=r"avg Lev1 ($\rho > \rho_0$)")
#finish
plt.yscale("log")
plt.xlabel("t / t_cross")
plt.ylabel("Densities [g/cm^3]")
plt.title(r"Max & Avg Densities, Lev0")
py.legend(loc=4, fontsize="small")
name = spath+"max_avg_Rho_Lev012.pdf"
plt.savefig(name,format="pdf")
plt.close()
示例4: bar_graph_dict
def bar_graph_dict(dict_to_plot, plot_title="", xlab="", ylab="", log_scale=False, col="#71cce6", sort_key_list=None,
min_count=1):
"""
Plots a bar graph of the provided dictionary.
Params:
dict_to_plot (dict): should have the format {'label': count}
plot_title (str), xlab (str), ylab (str), log_scale (bool): fairly self-explanatory plot customization
col (str): colour for the bars
sort_key_list (list): the keys of the dictionary are assumed to match based its first item and reordered as such
min_count (int): do not plot items with less than this in the count
"""
# Sort dictionary & convert to list using custom keys if needed
if not sort_key_list:
list_to_plot = sorted(dict_to_plot.items())
else:
list_to_plot = sorted(dict_to_plot.items(), key=lambda x: sort_key_list.index(x[0]))
# Remove list items with less than min_count
if min_count != 1:
list_to_plot = [dd for dd in list_to_plot if dd[1] >= min_count]
# Bar plot of secondary structure regions containing mutants in each mutant Cas9
bar_width = 0.45
plt.bar(np.arange(len(list_to_plot)), [dd[1] for dd in list_to_plot], width=bar_width, align='center', color=col)
plt.xticks(range(len(list_to_plot)), [dd[0] for dd in list_to_plot], rotation=45, ha='right')
plt.title(plot_title)
plt.xlabel(xlab)
plt.ylabel(ylab)
if log_scale:
plt.yscale('log')
plt.ylim(min_count-0.1) # Show values with just the minimum count
plt.show()
示例5: main
def main():
sample='q'
sm_bin='10.0_10.5'
catalogue = 'sm_9.5_s0.2_sfr_c-0.75_250'
#load in fiducial mock
filepath = './'
filename = 'sm_9.5_s0.2_sfr_c-0.8_Chinchilla_250_wp_fiducial_'+sample+'_'+sm_bin+'_cov.npy'
cov = np.matrix(np.load(filepath+filename))
diag = np.diagonal(cov)
filepath = cu.get_output_path() + 'analysis/central_quenching/observables/'
filename = 'sm_9.5_s0.2_sfr_c-0.8_Chinchilla_250_wp_fiducial_'+sample+'_'+sm_bin+'.dat'
data = ascii.read(filepath+filename)
rbins = np.array(data['r'])
mu = np.array(data['wp'])
#load in comparison mock
plt.figure()
plt.errorbar(rbins, mu, yerr=np.sqrt(np.diagonal(cov)), color='black')
plt.plot(rbins, wp, color='red')
plt.xscale('log')
plt.yscale('log')
plt.show()
inv_cov = cov.I
Y = np.matrix((wp-mu))
X = Y*inv_cov*Y.T
print(X)
示例6: plot_samples
def plot_samples(self):
""" Plot the samples requested for each arm """
plt.clf()
plt.scatter(range(0, self.K), self.sample_size)
plt.yscale('log')
plt.ioff()
plt.show()
示例7: plottamelo3
def plottamelo3():
a = np.arange(0,30)
nw = NWsc(matr1,True)
db = DBsc(matr1,True)
dbPR = productDBsc(matr1,True)
INsc = INsc1(matr1,True)
plt.yscale('log')
plt.plot(range(0,nw.iter),nw.res, color='blue', lw=2, label="Newton Sclaled")
#plt.plot(range(0,db.iter),db.res, color='red', lw=2, label="DB Sclaled")
#plt.plot(range(0,dbPR.iter),dbPR.res, color='green', lw=2, label="DB Product Sclaled")
#plt.plot(range(0,INsc.iter),INsc.res, color='orange', lw=2, label="IN Sclaled")
nw = newton(matr1,True)
db = DB(matr1,True)
dbPR = productDB(matr1,True)
IN = INiteration(matr1,True)
CR = CRiteration(matr1,True)
plt.yscale('log')
print len(range(0,nw.iter))
print len(nw.res)
plt.plot(range(0,nw.iter+1),nw.res, color='blue', lw=2, label="Newton")
#plt.plot(range(0,db.iter+1),db.res, color='red', lw=2, label="DB")
#plt.plot(range(0,dbPR.iter+1),dbPR.res, color='green', lw=2, label="DB Product")
#plt.plot(range(0,IN.iter+1),IN.res, color='orange', lw=2, label="IN")
#plt.plot(range(0,CR.iter+1),CR.res, color='brown', lw=2, label="CR")
plt.legend(loc='upper right')
plt.show()
示例8: plot_gradient_over_time
def plot_gradient_over_time(points, get_grad_over_time):
fig = plt.figure(figsize=(6.5, 4))
# Remove the plot frame lines. They are unnecessary chartjunk.
ax = plt.subplot(111)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
# ax.xaxis.set_major_locator(plt.MultipleLocator(1.0))
# ax.xaxis.set_minor_locator(plt.MultipleLocator(0.1))
# ax.yaxis.set_major_locator(plt.MultipleLocator(1.0))
# ax.yaxis.set_minor_locator(plt.MultipleLocator(0.1))
# ax.grid(which='major', axis='x', linewidth=0.75, linestyle='-', color='0.75')
# ax.grid(which='minor', axis='x', linewidth=0.25, linestyle='-', color='0.75')
# ax.grid(which='major', axis='y', linewidth=0.75, linestyle='-', color='0.75')
# ax.grid(which='minor', axis='y', linewidth=0.25, linestyle='-', color='0.75')
ax.grid(b=True, which='major', linewidth=0.75, linestyle=':', color='0.75')
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_ticks_position('none')
for wx, wRec, c in points:
grad_over_time = get_grad_over_time(wx, wRec)
x = np.arange(1, grad_over_time.shape[1]+1, 1)
plt.plot(x, np.sum(grad_over_time, axis=0), c+'.-', label='({0}, {1})'.format(wx, wRec), linewidth=1, markersize=8)
plt.xlim(1, grad_over_time.shape[1])
plt.xticks(x)
plt.gca().invert_xaxis()
plt.yscale('symlog')
plt.yticks([10**8, 10**6, 10**4, 10**2, 0, -10**2, -10**4, -10**6, -10**8])
plt.xlabel('time k')
plt.ylabel('gradient ')
plt.title('Unstability of gradient in backward propagation.\n(backpropagate from left to right)')
leg = plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False, numpoints=1)
leg_font = FontProperties()
leg_font.set_size('x-large')
leg.set_title('$(w_x, w_{rec})$', prop=leg_font)
示例9: create_time_plot
def create_time_plot(data, times, ylabel, title=None, filename=None,
xlims=None, ylims=None, log=False):
plt.close('all')
fig, ax = plt.subplots()
if type(data) == dict:
for lab in data.keys():
plt.plot(times[lab], data[lab], 'x', label=lab)
# plt.legend(loc='upper left')
plt.legend()
else:
plt.plot(times, data, 'x')
plt.grid()
plt.xlabel("Received Time")
plt.ylabel(ylabel)
if title is not None:
plt.title(title)
fig.autofmt_xdate()
if xlims is not None:
plt.xlim(xlims)
if ylims is not None:
plt.ylim(ylims)
if log:
plt.yscale('log')
if filename is not None:
plt.tight_layout()
plt.savefig(filename, fmt='pdf')
else:
plt.show()
示例10: plot_citation_graph
def plot_citation_graph(citation_graph, filename, plot_title):
# find the indegree_distribution
indeg_dist = in_degree_distribution(citation_graph)
# sort freq by keys
number_citations = sorted(indeg_dist.keys())
indeg_freq = [indeg_dist[n] for n in number_citations]
# normalize
total = sum(indeg_freq)
indeg_freq_norm = [freq / float(total) for freq in indeg_freq]
# calculate log/log, except for the first one (0)
#log_number_citations = [math.log10(x) for x in number_citations[1:]]
#log_indeg_freq_norm = [math.log10(x) for x in indeg_freq_norm[1:]]
plot(number_citations[1:], indeg_freq_norm[1:], 'o')
xscale("log")
yscale("log")
xlabel("log10 #citations")
ylabel("log10 Norm.Freq.")
title(plot_title)
grid(True)
savefig(filename)
show()
示例11: plotCurves
def plotCurves(losses,rateOfExceedance,return_periods,lossLevels):
plt.figure(1, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k')
plt.scatter(losses,rateOfExceedance,s=20)
if len(return_periods) > 0:
annual_rate_exc = 1.0/np.array(return_periods)
for rate in annual_rate_exc:
if rate > min(rateOfExceedance):
plt.plot([min(losses),max(losses)],[rate,rate],color='red')
plt.annotate('%.6f' % rate,xy=(max(losses),rate),fontsize = 12)
plt.yscale('log')
plt.xscale('log')
plt.ylim([min(rateOfExceedance),1])
plt.xlim([min(losses),max(losses)])
plt.xlabel('Losses', fontsize = 16)
plt.ylabel('Annual rate of exceedance', fontsize = 16)
setReturnPeriods = 1/rateOfExceedance
plt.figure(2, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k')
plt.scatter(setReturnPeriods,losses,s=20)
if len(return_periods) > 0:
for period in return_periods:
if period < max(setReturnPeriods):
plt.plot([period,period],[min(losses),max(losses)],color='red')
plt.annotate(str(period),xy=(period,max(losses)),fontsize = 12)
plt.xscale('log')
plt.xlim([min(setReturnPeriods),max(setReturnPeriods)])
plt.ylim([min(losses),max(losses)])
plt.xlabel('Return period (years)', fontsize = 16)
plt.ylabel('Losses', fontsize = 16)
示例12: plot
def plot():
plt.plot(x_large, y_large, label=u'grafo de tamaño grande')
plt.plot(x_medium, y_medium, label=u'grafo de tamaño medio')
plt.yscale('log')
plt.legend()
plt.xlabel(u'iteración')
plt.ylabel(u'diferencia en la norma del vector resultado entre sucesivas iteraciones')
示例13: __save
def __save(self, n, plot, sfile):
p.figure(figsize=sfile)
p.xlabel(plot.xlabel)
p.ylabel(plot.ylabel)
p.xscale(plot.xscale)
p.yscale(plot.yscale)
p.grid()
for curvetype, args, kwargs in plot.curves:
if curvetype == "plot":
p.plot(*args, **kwargs)
elif curvetype == "imshow":
p.imshow(*args, **kwargs)
elif curvetype == "hist":
p.hist(*args, **kwargs)
elif curvetype == "bar":
p.bar(*args, **kwargs)
p.axes().set_aspect(plot.aspect)
if plot.legend:
p.legend(shadow=0, loc=plot.loc)
if not os.path.isdir(plot.dir):
os.mkdir(plot.dir)
if plot.pgf:
p.savefig(plot.dir + plot.name + ".pgf")
print(plot.name + ".pgf")
if plot.pdf:
p.savefig(plot.dir + plot.name + ".pdf", bbox_inches="tight")
print(plot.name + ".pdf")
p.close()
示例14: make_plot
def make_plot():
# Set up figure
fig = plot.figure(figsize = (700 / my_dpi, 600 / my_dpi), dpi = my_dpi)
### Plot ###
for i, mode in enumerate(default_modes):
alpha = 0.4
if mode == 1:
alpha = 1.0
if mode == 3 or mode == 5:
alpha = 0.7
plot.plot(frame_range, modes_over_time[i, :], linewidth = linewidth, alpha = alpha, label = "%d" % mode)
# Axis
plot.xlim(0, frame_range[-1])
plot.ylim(10**(-3.5), 10**(0.0))
plot.yscale("log")
# Annotate
this_title = readTitle()
plot.xlabel("Number of Planet Orbits", fontsize = fontsize)
plot.ylabel("Vortensity Mode Amplitudes", fontsize = fontsize)
plot.title("%s" % (this_title), fontsize = fontsize + 1)
plot.legend(loc = "upper right", bbox_to_anchor = (1.2, 1.0)) # outside of plot
# Save and Close
plot.savefig("fft_vortensity_modes.png", bbox_inches = 'tight', dpi = my_dpi)
plot.show()
plot.close(fig) # Close Figure (to avoid too many figures)
示例15: saskia_plot_pulseheight
def saskia_plot_pulseheight( data_file_name, station_number=501, detector=0, number_bins=200, range_start=0., range_end=4500 ):
# If the plot exist we skip the plotting
if os.path.isfile('./img/pulseheigt_histogram_%d_detector_%d.pdf' % (station_number, detector)):
# Say if the plot is present
print "Plot already present for station %d" % station_number
# If there is no plot we make it
else:
# Now transform the ROOT histogram to a python figure
rootpy.plotting.root2matplotlib.hist(ph_histo)
# Setting the limits on the axis
plt.ylim((pow(10,-1),pow(10,7)))
plt.xlim((range_start, range_end))
plt.yscale('log')
# Setting the plot labels and title
plt.xlabel("Pulseheight [ADC]")
plt.ylabel("Counts")
plt.title("Pulseheight histogram (log scale) for station (%d)" %station_number)
# Saving them Pica
plt.savefig(
'./img/pulseheigt_histogram_%d_detector_%d.pdf' % (station_number, detector) , # Name of the file
bbox_inches='tight') # Use less whitespace