本文整理汇总了Python中matplotlib.pyplot.ylim函数的典型用法代码示例。如果您正苦于以下问题:Python ylim函数的具体用法?Python ylim怎么用?Python ylim使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ylim函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_intens_all
def make_intens_all(w1, w2):
fig = plt.figure(figsize=(6., 6.))
gs = gridspec.GridSpec(1,1)
gs.update(left=0.13, right=0.985, bottom = 0.13, top=0.988)
ax = plt.subplot(gs[0])
plt.minorticks_on()
make_contours()
labels = ["A", "B", "C", "D"]
for i, field in enumerate(fields):
os.chdir(os.path.join(data_dir, "combined_{0}".format(field)))
image = "collapsed_w{0}_{1}.fits".format(w1, w2)
intens = pf.getdata(image, verify=False)
extent = calc_extent(image)
extent = offset_extent(extent, field)
plt.imshow(intens, cmap="bone", origin="bottom", extent=extent,
vmin=-20, vmax=80)
verts = calc_verts(intens, extent)
path = Path(verts, [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO,
Path.CLOSEPOLY,])
patch = patches.PathPatch(path, facecolor='none', lw=2, edgecolor="r")
ax.add_patch(patch)
xtext, ytext = np.mean(verts[:-1], axis=0)
plt.text(xtext-8, ytext+8, labels[i], color="r",
fontsize=35, fontweight='bold', va='top')
plt.hold(True)
plt.xlim(26, -38)
plt.ylim(-32, 32)
plt.xlabel("X [kpc]")
plt.ylabel("Y [kpc]")
# plt.show()
plt.savefig(os.path.join(plots_dir, "muse_fields.eps"), dpi=60,
format="eps")
plt.savefig(os.path.join(plots_dir, "muse_fields.png"), dpi=200)
return
示例2: plotErrorBars
def plotErrorBars(dict_to_plot, x_lim, y_lim, xlabel, y_label, title, out_file, margin=[0.05, 0.05], loc=2):
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(y_label)
if y_lim is None:
y_lim = [1 * float("Inf"), -1 * float("Inf")]
max_val_seen_y = y_lim[1] - margin[1]
min_val_seen_y = y_lim[0] + margin[1]
print min_val_seen_y, max_val_seen_y
max_val_seen_x = x_lim[1] - margin[0]
min_val_seen_x = x_lim[0] + margin[0]
handles = []
for k in dict_to_plot:
means, stds, x_vals = dict_to_plot[k]
min_val_seen_y = min(min(np.array(means) - np.array(stds)), min_val_seen_y)
max_val_seen_y = max(max(np.array(means) + np.array(stds)), max_val_seen_y)
min_val_seen_x = min(min(x_vals), min_val_seen_x)
max_val_seen_x = max(max(x_vals), max_val_seen_x)
handle = plt.errorbar(x_vals, means, yerr=stds)
handles.append(handle)
print max_val_seen_y
plt.xlim([min_val_seen_x - margin[0], max_val_seen_x + margin[0]])
plt.ylim([min_val_seen_y - margin[1], max_val_seen_y + margin[1]])
plt.legend(handles, dict_to_plot.keys(), loc=loc)
plt.savefig(out_file)
示例3: scree_plot
def scree_plot(pca_obj, fname=None):
'''
Scree plot for variance & cumulative variance by component from PCA.
Arguments:
- pca_obj: a fitted sklearn PCA instance
- fname: path to write plot to file
Output:
- scree plot
'''
components = pca_obj.n_components_
variance = pca.explained_variance_ratio_
plt.figure()
plt.plot(np.arange(1, components + 1), np.cumsum(variance), label='Cumulative Variance')
plt.plot(np.arange(1, components + 1), variance, label='Variance')
plt.xlim([0.8, components]); plt.ylim([0.0, 1.01])
plt.xlabel('No. Components', labelpad=11); plt.ylabel('Variance Explained', labelpad=11)
plt.legend(loc='best')
plt.tight_layout()
if fname is not None:
plt.savefig(fname)
plt.close()
else:
plt.show()
return
示例4: tuning
def tuning(x, y, err=None, smooth=None, ylabel=None, pal=None):
"""
Plot a tuning curve
"""
if smooth is not None:
xs, ys = smoothfit(x, y, smooth)
plt.plot(xs, ys, linewidth=4, color="black", zorder=1)
else:
ys = asarray([0])
if pal is None:
pal = sns.color_palette("husl", n_colors=len(x) + 6)
pal = pal[2 : 2 + len(x)][::-1]
plt.scatter(x, y, s=300, linewidth=0, color=pal, zorder=2)
if err is not None:
plt.errorbar(x, y, yerr=err, linestyle="None", ecolor="black", zorder=1)
plt.xlabel("Wall distance (mm)")
plt.ylabel(ylabel)
plt.xlim([-2.5, 32.5])
errTmp = err
errTmp[isnan(err)] = 0
rng = max([nanmax(ys), nanmax(y + errTmp)])
plt.ylim([0 - rng * 0.1, rng + rng * 0.1])
plt.yticks(linspace(0, rng, 3))
plt.xticks(range(0, 40, 10))
sns.despine()
return rng
示例5: draw_stat
def draw_stat(actual_price, action):
price_list = []
x_list = []
# idx = np.where(actual_price == 0)[0]
# print idx
# print actual_price[np.where(actual_price < 2000)]
# idx = [0] + idx.tolist()
# print idx
# for i in range(len(idx)-1):
# price_list.append(actual_price[idx[i]+1:idx[i+1]-1])
# x_list.append(range(idx[i]+i+1, idx[i+1]+i-1))
# for i in range(len(idx)-1):
# print x_list[i]
# print price_list[i]
# plt.plot(x_list[i], price_list[i], 'r')
x_list = range(1,50)
price_list = actual_price[1:50]
plt.plot(x_list, price_list, 'k')
for i in range(1, 50):
style = 'go'
if action[i] == 1:
style = 'ro'
plt.plot(i, actual_price[i], style)
plt.ylim(2140, 2144.2)
# plt.show()
plt.savefig("action.png")
示例6: make_fish
def make_fish(zoom=False):
plt.close(1)
plt.figure(1, figsize=(6, 4))
plt.plot(plot_limits['pitch'], plot_limits['rolldev'], '-g', lw=3)
plt.plot(plot_limits['pitch'], -plot_limits['rolldev'], '-g', lw=3)
plt.plot(pitch.midvals, roll.midvals, '.b', ms=1, alpha=0.7)
p, r = make_ellipse() # pitch, off nominal roll
plt.plot(p, r, '-c', lw=2)
gf = -0.08 # Fudge on pitch value for illustrative purposes
plt.plot(greta['pitch'] + gf, -greta['roll'], '.r', ms=1, alpha=0.7)
plt.plot(greta['pitch'][-1] + gf, -greta['roll'][-1], 'xr', ms=10, mew=2)
if zoom:
plt.xlim(46.3, 56.1)
plt.ylim(4.1, 7.3)
else:
plt.ylim(-22, 22)
plt.xlim(40, 180)
plt.xlabel('Sun pitch angle (deg)')
plt.ylabel('Sun off-nominal roll angle (deg)')
plt.title('Mission off-nominal roll vs. pitch (5 minute samples)')
plt.grid()
plt.tight_layout()
plt.savefig('fish{}.png'.format('_zoom' if zoom else ''))
示例7: entries_histogram
def entries_histogram(turnstile_weather):
'''
Before we perform any analysis, it might be useful to take a
look at the data we're hoping to analyze. More specifically, lets
examine the hourly entries in our NYC subway data and determine what
distribution the data follows. This data is stored in a dataframe
called turnstile_weather under the ['ENTRIESn_hourly'] column.
Why don't you plot two histograms on the same axes, showing hourly
entries when raining vs. when not raining. Here's an example on how
to plot histograms with pandas and matplotlib:
turnstile_weather['column_to_graph'].hist()
Your histograph may look similar to the following graph:
http://i.imgur.com/9TrkKal.png
You can read a bit about using matplotlib and pandas to plot
histograms:
http://pandas.pydata.org/pandas-docs/stable/visualization.html#histograms
You can look at the information contained within the turnstile weather data at the link below:
https://www.dropbox.com/s/meyki2wl9xfa7yk/turnstile_data_master_with_weather.csv
'''
plt.figure()
(turnstile_weather[turnstile_weather.rain==0].ENTRIESn_hourly).hist(bins=175) # your code here to plot a historgram for hourly entries when it is not raining
(turnstile_weather[turnstile_weather.rain==1].ENTRIESn_hourly).hist(bins=175) # your code here to plot a historgram for hourly entries when it is raining
plt.ylim(ymax = 45000, ymin = 0)
plt.xlim(xmax = 6000, xmin = 0)
return plt
示例8: main
def main( args ):
hash = get_genes_with_features(args['file'])
for key, featurearray in hash.iteritems():
cluster, branch = key.split()
length = int(featurearray[0][0])
import matplotlib.pyplot as P
x = [e+1 for e in range(length+1)]
y1 = [0] * (length+1)
y2 = [0] * (length+1)
for feature in featurearray:
length, pos, aa, prob = feature[0:4]
if prob > 0.95: y1[pos] = prob
else: y2[pos] = prob
P.bar(x, y1, color='#000000', edgecolor='#000000')
P.bar(x, y2, color='#bbbbbb', edgecolor='#bbbbbb')
P.ylim(ymin=0, ymax=1)
P.xlim(xmin=0, xmax=length)
P.xlabel("position in the ungapped alignment [aa]")
P.ylabel(r'$P (\omega > 1)$')
P.title(cluster + " (branch " + branch + ")")
P.axhline(y=.95, xmin=0, xmax=length, linestyle=":", color="k")
P.savefig(cluster + "." + branch + ".png", format="png")
P.close()
示例9: exec_transmissions
def exec_transmissions():
IP,IP_AP,files=parser_reduce()
plt.figure("GRAPHE_D'EVOLUTION_DES_TRANSMISSIONS")
ENS_TEMPS_, TRANSMISSION_ = transmissions(files)
plt.plot(ENS_TEMPS_, TRANSMISSION_,"r.", label="Transmissions: ")
lot = map(inet_aton, IP)
lot.sort()
iplist1 = map(inet_ntoa, lot)
for i in iplist1: #ici j'affiche les annotations et vérifie si j'ai des @ip de longueur 9 ou 8 pour connaitre la taille de la fenetre du graphe
if len(i)==9:
maxim_=i[-2:] #Sera utilisé pour la taille de la fenetre du graphe
plt.annotate(' Machine: '+ i ,horizontalalignment='left', xy=(1, float(i[-2:])), xytext=(1, float(i[-2:])-0.4),arrowprops=dict(facecolor='black', shrink=0.05),)
else:
maxim_=i[-1:] #Sera utilisé pour la taille de la fenetre du graphe
plt.annotate(' Machine: '+ i ,horizontalalignment='left', xy=(1, float(i[7])), xytext=(1, float(i[7])-0.4),arrowprops=dict(facecolor='black', shrink=0.05),)
for i in IP_AP: #ACCESS POINT ( cas spécial )
if i[-2:]:
plt.annotate(' access point: '+ i , xy=(1, i[7]), xytext=(1, float(i[7])-0.4),arrowprops=dict(facecolor='black', shrink=0.05),)
plt.ylim(0, (float(maxim_))+1) #C'est à ça que sert le tri
plt.xlim(1, 1.1)
plt.legend(loc='best',prop={'size':10})
plt.xlabel('Temps (s)')
plt.ylabel('IP machines transmettrices')
plt.grid(True)
plt.title("GRAPHE_D'EVOLUTION_DES_TRANSMISSIONS")
plt.legend(loc='best')
plt.show()
示例10: plot_1D_pmf
def plot_1D_pmf(coord,title):
''' Plot a 1D pmf for a coordinate.'''
x = get_data(coord)
path = os.getcwd()
savedir = path+"/pmfs"
if os.path.exists(savedir) == False:
os.mkdir(savedir)
if coord in ["Rg","rmsd"]:
skip = 80
else:
skip = 4
vals = np.unique(list(x))[::skip]
n,bins = np.histogram(x,bins=vals,density=True)
np.savetxt(savedir+"/"+coord+"_n.dat",n,delimiter=" ",fmt="%.4f")
np.savetxt(savedir+"/"+coord+"_bins.dat",bins,delimiter=" ",fmt="%.4f")
pmf = -np.log(n)
pmf -= min(pmf)
plt.figure()
plt.plot(bins[1:]/max(bins),pmf)
plt.xlabel(coord,fontsize="xx-large")
plt.ylabel("F("+coord+") / kT",fontsize="xx-large")
plt.title("F("+coord+") "+title,fontsize="xx-large")
plt.ylim(0,6)
plt.xlim(0,1)
plt.savefig(savedir+"/"+coord+"_pmf.pdf")
示例11: test_draw_residual_blh_norm
def test_draw_residual_blh_norm():
np.random.seed(0)
data = np.random.randn(1000)
blh = BinnedLH(gaussian, data)
blh.draw_residual(args=(0., 1.), norm=True)
plt.ylim(-4., 3.)
plt.xlim(-4., 3.)
示例12: visualizeEigenvalues
def visualizeEigenvalues(eVal, verboseLevel):
real = []
imag = []
for z in eVal:
rp = z.real
im = z.imag
if not (rp == np.inf or rp == - np.inf) \
and not (im == np.inf or im == - np.inf):
real.append(rp)
imag.append(im)
if verboseLevel>=1:
print("length of regular real values=" + str(len(real)))
print("length of regular imag values=" + str(len(imag)))
print("minimal real part=" + str(min(real)), "& maximal real part=" + str(max(real)))
print("minimal imag part=" + str(min(imag)), "& maximal imag part=" + str(max(imag)))
if verboseLevel==2:
print("all real values:", str(real))
print("all imag values:", str(imag))
# plt.scatter(real[4:],img[4:])
plt.scatter(real, imag)
plt.grid(True)
plt.xlabel("realpart")
plt.ylabel("imagpart")
plt.xlim(-10, 10)
plt.ylim(-10, 10)
plt.show()
示例13: example
def example(show=True, save=False):
# Settings:
t0 = 0.
dt = .0001
dv = .0001
tf = .1
verbose = True
update_method = 'approx'
approx_order = 1
tol = 1e-14
# Run simulation:
simulation = get_simulation(dv=dv, verbose=verbose, update_method=update_method, approx_order=approx_order, tol=tol)
simulation.run(dt=dt, tf=tf, t0=t0)
# Visualize:
i1 = simulation.population_list[1]
plt.figure(figsize=(3,3))
plt.plot(i1.t_record, i1.firing_rate_record)
plt.xlim([0,tf])
plt.ylim(ymin=0)
plt.xlabel('Time (s)')
plt.ylabel('Firing Rate (Hz)')
plt.tight_layout()
if save == True: plt.savefig('./excitatory_inhibitory.png')
if show == True: plt.show()
return i1.t_record, i1.firing_rate_record
示例14: draw
def draw(ord_l, gaps):
axScatter = plt.subplot(3, 1, 1)
number_samples=0
# axScatter.scatter([i['seq'] for i in ord_l[-number_samples:]], [i['a'] for i in ord_l[-number_samples:]], s=2, color='r', label='ch1')
axScatter.scatter([i['seq'] % 24 for i in ord_l[-number_samples:]], [i['d'] for i in ord_l[-number_samples:]], s=2, color='r', label='ch1')
# axScatter.scatter(time_l[-number_samples:], b_l[-number_samples:], s=2, color='c', label='ch2')
# axScatter.scatter(time_l[-number_samples:], c_l[-number_samples:], s=2, color='y', label='ch3')
# axScatter.scatter(time_l[-number_samples:], d_l[-number_samples:], s=2, color='g', label='ch4')
plt.ylim(-9000000, 9000000)
plt.legend()
axScatter.set_xlabel("Sequence Packet")
axScatter.set_ylabel("Voltage")
plt.title("Channels Values")
# time_plot = plt.subplot(3, 1, 2)
# time_plot.scatter([i['seq'] for i in ord_l[-number_samples:]], [i['delta'] for i in ord_l[-number_samples:]], s=1, color='r', label='delta')
# time_plot.set_xlabel("Sequence Packet")
# time_plot.set_ylabel("Delta to referencial")
# ax2 = time_plot.twinx()
# ax2.scatter([i['seq'] for i in ord_l[-number_samples:]], [i['ts'] for i in ord_l[-number_samples:]], s=2, color='g', label='Timestamp')
# ax2.set_ylabel("Kernel time")
# plt.title("Timestamp deltas")
gaps_draw = plt.subplot(3, 1, 3)
gaps_draw.plot([i[0] for i in gaps[-number_samples:]], [i[1] for i in gaps[-number_samples:]], color='b', marker='.', label='gaps')
gaps_draw.set_ylim(-0.5, 1.5)
plt.draw()
# plt.savefig("res.png")
plt.show()
示例15: plot_decision_regions
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
# setup marker generator and color map
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
# plot the decision surface
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
# plot class samples
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
alpha=0.8, c=cmap(idx),
marker=markers[idx], label=cl)
# Highlight test samples
if test_idx:
X_test, y_test = X[test_idx, :], y[test_idx]
plt.scatter(X_test[:, 0],
X_test[:, 1],
c='',
alpha=1.0,
linewidths=1,
marker='o',
s=55, label='test set')