当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.xticks函数代码示例

本文整理汇总了Python中matplotlib.pyplot.xticks函数的典型用法代码示例。如果您正苦于以下问题:Python xticks函数的具体用法?Python xticks怎么用?Python xticks使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了xticks函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_rotated_labels_parameters

def test_rotated_labels_parameters(x_alignment, y_alignment,
                                   x_tick_label_width, y_tick_label_width,
                                   rotation):
    fig, _ = __plot()

    if x_alignment:
        plt.xticks(ha=x_alignment, rotation=rotation)
    if y_alignment:
        plt.yticks(ha=y_alignment, rotation=rotation)

    # convert to tikz file
    _, tmp_base = tempfile.mkstemp()
    tikz_file = tmp_base + '_tikz.tex'

    extra_dict = {}

    if x_tick_label_width:
        extra_dict['x tick label text width'] = x_tick_label_width
    if y_tick_label_width:
        extra_dict['y tick label text width'] = y_tick_label_width

    matplotlib2tikz.save(
        tikz_file,
        figurewidth='7.5cm',
        extra_axis_parameters=extra_dict
        )

    # close figure
    plt.close(fig)

    # delete file
    os.unlink(tikz_file)
开发者ID:awehrfritz,项目名称:matplotlib2tikz,代码行数:32,代码来源:test_rotated_labels.py

示例2: plot_scenario

def plot_scenario(strategies, names, scenario_id=1):
    probabilities = get_scenario(scenario_id)

    plt.figure(figsize=(6, 4.5))

    ax = plt.subplot(111)
    ax.spines["top"].set_visible(False)
    ax.spines["bottom"].set_visible(False)
    ax.spines["right"].set_visible(False)
    ax.spines["left"].set_visible(False)

    ax.get_xaxis().tick_bottom()
    ax.get_yaxis().tick_left()

    plt.yticks(fontsize=14)
    plt.xticks(fontsize=14)
    plt.xlim((0, 1300))

    # Remove the tick marks; they are unnecessary with the tick lines we just plotted.
    plt.tick_params(axis="both", which="both", bottom="on", top="off",
                    labelbottom="on", left="off", right="off", labelleft="on")

    for rank, (strategy, name) in enumerate(zip(strategies, names)):
        plot_strategy(probabilities, strategy, name, rank)

    plt.title("Bandits: " + str(probabilities), fontweight='bold')
    plt.xlabel('Number of Trials', fontsize=14)
    plt.ylabel('Cumulative Regret', fontsize=14)
    plt.legend(names)
    plt.show()
开发者ID:finartist,项目名称:CG1,代码行数:30,代码来源:plotbandits.py

示例3: showOverlapTable

def showOverlapTable(modes_x, modes_y, **kwargs):
    """Show overlap table using :func:`~matplotlib.pyplot.pcolor`.  *modes_x*
    and *modes_y* are sets of normal modes, and correspond to x and y axes of
    the plot.  Note that mode indices are incremented by 1.  List of modes
    is assumed to contain a set of contiguous modes from the same model.

    Default arguments for :func:`~matplotlib.pyplot.pcolor`:

      * ``cmap=plt.cm.jet``
      * ``norm=plt.normalize(0, 1)``"""

    import matplotlib.pyplot as plt

    overlap = abs(calcOverlap(modes_y, modes_x))
    if overlap.ndim == 0:
        overlap = np.array([[overlap]])
    elif overlap.ndim == 1:
        overlap = overlap.reshape((modes_y.numModes(), modes_x.numModes()))

    cmap = kwargs.pop('cmap', plt.cm.jet)
    norm = kwargs.pop('norm', plt.normalize(0, 1))
    show = (plt.pcolor(overlap, cmap=cmap, norm=norm, **kwargs),
            plt.colorbar())
    x_range = np.arange(1, modes_x.numModes() + 1)
    plt.xticks(x_range-0.5, x_range)
    plt.xlabel(str(modes_x))
    y_range = np.arange(1, modes_y.numModes() + 1)
    plt.yticks(y_range-0.5, y_range)
    plt.ylabel(str(modes_y))
    plt.axis([0, modes_x.numModes(), 0, modes_y.numModes()])
    if SETTINGS['auto_show']:
        showFigure()
    return show
开发者ID:karolamik13,项目名称:ProDy,代码行数:33,代码来源:plotting.py

示例4: make_bar

    def make_bar(
        x,
        y,
        f_name,
        title=None,
        legend=None,
        x_label=None,
        y_label=None,
        x_ticks=None,
        y_ticks=None,
    ):
        fig = plt.figure()

        if title is not None:
            plt.title(title, fontsize=16)
        if x_label is not None:
            plt.ylabel(x_label)
        if y_label is not None:
            plt.xlabel(y_label)
        if x_ticks is not None:
            plt.xticks(x, x_ticks)
        if y_ticks is not None:
            plt.yticks(y_ticks)

        plt.bar(x, y, align="center")

        if legend is not None:
            plt.legend(legend)

        plt.savefig(f_name)
        plt.close(fig)
开发者ID:DongjunLee,项目名称:stalker-bot,代码行数:31,代码来源:plot.py

示例5: tuning

def tuning(x, y, err=None, smooth=None, ylabel=None, pal=None):
    """
    Plot a tuning curve
    """
    if smooth is not None:
        xs, ys = smoothfit(x, y, smooth)
        plt.plot(xs, ys, linewidth=4, color="black", zorder=1)
    else:
        ys = asarray([0])
    if pal is None:
        pal = sns.color_palette("husl", n_colors=len(x) + 6)
        pal = pal[2 : 2 + len(x)][::-1]
    plt.scatter(x, y, s=300, linewidth=0, color=pal, zorder=2)
    if err is not None:
        plt.errorbar(x, y, yerr=err, linestyle="None", ecolor="black", zorder=1)
    plt.xlabel("Wall distance (mm)")
    plt.ylabel(ylabel)
    plt.xlim([-2.5, 32.5])
    errTmp = err
    errTmp[isnan(err)] = 0
    rng = max([nanmax(ys), nanmax(y + errTmp)])
    plt.ylim([0 - rng * 0.1, rng + rng * 0.1])
    plt.yticks(linspace(0, rng, 3))
    plt.xticks(range(0, 40, 10))
    sns.despine()
    return rng
开发者ID:speron,项目名称:sofroniew-vlasov-2015,代码行数:26,代码来源:plots.py

示例6: disc_norm

def disc_norm():
    x = np.linspace(-3,3,100)
    y = st.norm.pdf(x,0,1)
    fig, ax = plt.subplots()
    fig.canvas.draw()
    
    ax.plot(x,y)
    
    fill1_x = np.linspace(-2,-1.5,100)
    fill1_y = st.norm.pdf(fill1_x,0,1)
    fill2_x = np.linspace(-1.5,-1,100)
    fill2_y = st.norm.pdf(fill2_x,0,1)
    ax.fill_between(fill1_x,0,fill1_y,facecolor = 'blue', edgecolor = 'k',alpha = 0.75)
    ax.fill_between(fill2_x,0,fill2_y,facecolor = 'blue', edgecolor = 'k',alpha = 0.75)
    for label in ax.get_yticklabels():
        label.set_visible(False)
    for tick in ax.get_xticklines():
        tick.set_visible(False)
    for tick in ax.get_yticklines():
        tick.set_visible(False)
    
    plt.rc("font", size = 16)
    plt.xticks([-2,-1.5,-1])
    labels = [item.get_text() for item in ax.get_xticklabels()]
    labels[0] = r"$v_k$"
    labels[1] = r"$\varepsilon_k$"
    labels[2] = r"$v_{k+1}$"
    ax.set_xticklabels(labels)
    plt.ylim([0, .45])

    
    plt.savefig('discnorm.pdf')
    plt.clf()
开发者ID:davidreber,项目名称:Labs,代码行数:33,代码来源:plots.py

示例7: plot_jacobian

def plot_jacobian(A, name, cmap= plt.cm.coolwarm, normalize=True, precision=1e-6):

    """
    Customized visualization of jacobian matrices for observing
    sparsity patterns
    """
    
    plt.figure()
    fig, ax = plt.subplots()
    
    if normalize is True:
        plt.imshow(A, interpolation='none', cmap=cmap,
                   norm = mpl.colors.Normalize(vmin=-1.,vmax=1.))
    else:
        plt.imshow(A, interpolation='none', cmap=cmap)        
    plt.colorbar(format=ticker.FuncFormatter(fmt))
    
    ax.spy(A, marker='.', markersize=0,  precision=precision)
    
    ax.spines['right'].set_visible(True)
    ax.spines['bottom'].set_visible(True)
    ax.xaxis.set_ticks_position('top')
    ax.yaxis.set_ticks_position('left')

    xlabels = np.linspace(0, A.shape[0], 5, True, dtype=int)
    ylabels = np.linspace(0, A.shape[1], 5, True, dtype=int)

    plt.xticks(xlabels)
    plt.yticks(ylabels)

    plt.savefig(name, bbox_inches='tight', pad_inches=0.05)
    
    plt.close()

    return
开发者ID:komahanb,项目名称:pchaos,代码行数:35,代码来源:plotter.py

示例8: plot_top_candidates

def plot_top_candidates(tweets, n, gop, save_to = None): 
  '''
  Plots the counts of top n candidate pair mentions given a Tweets class.
  Note: used for task 2.  
  ''' 
  counts = tweets.top_pairs(n, gop)

  pairs = [] 
  mentions = [] 
  for pair, ment in counts: 
    p = pair.split("|")
    c0 = CANDIDATE_NAMES[ p[0] ] 
    c1 = CANDIDATE_NAMES[ p[1] ]
    pairs.append(c0 + "\n" + c1)
    mentions.append(ment)

  

  fig = plt.figure(figsize = (FIGWIDTH, FIGHEIGHT)) 
  plt.bar(range(len(counts)), mentions)
  plt.xticks(range(len(counts)), pairs, rotation = 'vertical')

  if gop: 
    plt.title("Pairs of GOP Candidates Mentioned most Frequently together")
  else: 
    plt.title("Pairs of Candidates Mentioned most Frequently together")
  plt.xlabel("Number of Mentions")
  plt.ylabel("Number of Tweets")

  plt.show()
  if save_to: 
    fig.savefig(save_to)
开发者ID:karljiangster,项目名称:Python-Fun-Stuff,代码行数:32,代码来源:debate_tweets.py

示例9: plot_per_min_debate

def plot_per_min_debate(tweets, cands, interval, \
  start = DEBATE_START // 60, end = DEBATE_END // 60, tic_inc = 15, save_to = None): 
  '''
  Plots data from beg of debate to end. For Task 4a. 
  Note: start and end should be in minutes, not seconds
  '''

  fig = plt.figure(figsize = (FIGWIDTH, FIGHEIGHT))

  period = range(start, end, interval)
  c_dict = tweets.get_candidate_mentions_per_minute(cands, interval, period)

  y = np.row_stack()
  for candidate in c_dict: 
    plt.plot(period, c_dict[candidate], label = CANDIDATE_NAMES[candidate])

  if interval == 1: 
    plt.title("Mentions per Minute During Debate")
  else: 
    plt.title("Mentions per {} minutes before, during, and after debate".\
      format(interval))
  plt.xlabel("Time")
  plt.ylabel("Number of Tweets")
  plt.legend()

  ticks_range = range(start, end, tic_inc)
  labels = list(map(lambda x: str(x - start) + " min", ticks_range))
  plt.xticks(ticks_range, labels, rotation = 'vertical')
  plt.xlim( (start, end) )
  
  if save_to: 
    fig.savefig(save_to)
  plt.show()
开发者ID:karljiangster,项目名称:Python-Fun-Stuff,代码行数:33,代码来源:debate_tweets.py

示例10: barPlot

	def barPlot(self, datalist, threshold, figname):

		tally = self.geneCount(datalist)

		#Limit the items plotted to those over 1% of the read mass
		geneplot = defaultdict()
		for g, n in tally.iteritems():
			if n > int(sum(tally.values())*threshold):
				geneplot[g] = n

		#Get plotting values
		olist = OrderedDict(sorted(geneplot.items(),key=lambda t: t[0]))
		summe = sum(olist.values())
		freq = [float(x)/float(summe) for x in olist.values()]
		
		#Create plot
		fig = plt.figure()
		width = .35
		ind = np.arange(len(geneplot.keys()))
		plt.bar(ind, freq)
		plt.xticks(ind + width, geneplot.keys())
		locs, labels = plt.xticks() 
		plt.setp(labels, rotation=90)
		plt.show()

		fig.savefig(figname)
		print("Saved bar plot as: "+figname)
开发者ID:cnellington,项目名称:Antibody-Statistics,代码行数:27,代码来源:annotationstats.py

示例11: graph_by_sender

    def graph_by_sender(self):

        mac_adresses = {}  # new dictionary
        for pkt in self.pcap_file:
            mac_adresses.update({pkt[Dot11].addr2: 0})
        for pkt in self.pcap_file:
            mac_adresses[pkt[Dot11].addr2] += 1

        MA = []
        for ma in mac_adresses:
            MA.append(mac_adresses[ma])

        plt.clf()
        plt.suptitle('Number of packets of every sender', fontsize=14, fontweight='bold')
        plt.bar(range(len(mac_adresses)), sorted(MA), align='center', color=MY_COLORS)

        plt.xticks(range(len(mac_adresses)), sorted(mac_adresses.keys()))

        plt.rcParams.update({'font.size': 10})

        plt.xlabel('Senders mac addresses')
        plt.ylabel('Number of packets')

        # Set tick colors:
        ax = plt.gca()
        ax.tick_params(axis='x', colors='k')
        ax.tick_params(axis='y', colors='r')
        ax.set_xticklabels(ax.xaxis.get_majorticklabels(), rotation=45)

        plt.show()
开发者ID:yarongoldshtein,项目名称:Wifi_Parser,代码行数:30,代码来源:ex3.py

示例12: template_matching

def template_matching():
    img = cv2.imread('messi.jpg',0)
    img2 = img.copy()
    template = cv2.imread('face.png',0)
    w, h = template.shape[::-1]

    # All the 6 methods for comparison in a list
    methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
            'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']

    for meth in methods:
        img = img2.copy()
        method = eval(meth)

        # Apply template Matching
        res = cv2.matchTemplate(img,template,method)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

        # If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
        if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
            top_left = min_loc
        else:
            top_left = max_loc
        bottom_right = (top_left[0] + w, top_left[1] + h)

        cv2.rectangle(img,top_left, bottom_right, 255, 2)

        plt.subplot(121),plt.imshow(res,cmap = 'gray')
        plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
        plt.subplot(122),plt.imshow(img,cmap = 'gray')
        plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
        plt.suptitle(meth)

        plt.show()
开发者ID:JamesPei,项目名称:PythonProjects,代码行数:34,代码来源:TemplateMatching.py

示例13: plotSummaryBar

def plotSummaryBar(library, num, eventNames, sizes, times, events):
  import numpy as np
  import matplotlib.pyplot as plt

  eventColors = ['b', 'g', 'r', 'y']
  arches = sizes.keys()
  names  = []
  N      = len(sizes[arches[0]])
  width  = 0.2
  ind    = np.arange(N) - 0.25
  bars   = {}
  for arch in arches:
    bars[arch] = []
    bottom = np.zeros(N)
    for event, color in zip(eventNames, eventColors):
      names.append(arch+' '+event)
      times = np.array(events[arch][event])[:,0]
      bars[arch].append(plt.bar(ind, times, width, color=color, bottom=bottom))
      bottom += times
    ind += 0.3

  plt.xlabel('Number of Dof')
  plt.ylabel('Time (s)')
  plt.title('GPU vs. CPU Performance on '+library+' Example '+str(num))
  plt.xticks(np.arange(N), map(str, sizes[arches[0]]))
  #plt.yticks(np.arange(0,81,10))
  #plt.legend( (p1[0], p2[0]), ('Men', 'Women') )
  plt.legend([bar[0] for bar in bars[arches[0]]], eventNames, 'upper right', shadow = True)

  plt.show()
  return
开发者ID:Kun-Qu,项目名称:petsc,代码行数:31,代码来源:benchmarkExample.py

示例14: test_rotated_labels_parameters_different_values

def test_rotated_labels_parameters_different_values(x_tick_label_width,
                                                    y_tick_label_width):
    fig, ax = __plot()

    plt.xticks(ha='left', rotation=90)
    plt.yticks(ha='left', rotation=90)
    ax.xaxis.get_majorticklabels()[0].set_rotation(20)
    ax.yaxis.get_majorticklabels()[0].set_horizontalalignment('right')

    # convert to tikz file
    _, tmp_base = tempfile.mkstemp()
    tikz_file = tmp_base + '_tikz.tex'

    extra_dict = {}

    if x_tick_label_width:
        extra_dict['x tick label text width'] = x_tick_label_width
    if y_tick_label_width:
        extra_dict['y tick label text width'] = y_tick_label_width

    matplotlib2tikz.save(
        tikz_file,
        figurewidth='7.5cm',
        extra_axis_parameters=extra_dict
        )

    # close figure
    plt.close(fig)

    # delete file
    os.unlink(tikz_file)
开发者ID:awehrfritz,项目名称:matplotlib2tikz,代码行数:31,代码来源:test_rotated_labels.py

示例15: plot_head_map

def plot_head_map(mma, target_labels, source_labels):
  fig, ax = plt.subplots()
  heatmap = ax.pcolor(mma, cmap=plt.cm.Blues)

  # put the major ticks at the middle of each cell
  ax.set_xticks(numpy.arange(mma.shape[1])+0.5, minor=False)
  ax.set_yticks(numpy.arange(mma.shape[0])+0.5, minor=False)
  
  # without this I get some extra columns rows
  # http://stackoverflow.com/questions/31601351/why-does-this-matplotlib-heatmap-have-an-extra-blank-column
  ax.set_xlim(0, int(mma.shape[1]))
  ax.set_ylim(0, int(mma.shape[0]))

  # want a more natural, table-like display
  ax.invert_yaxis()
  ax.xaxis.tick_top()

  # source words -> column labels
  ax.set_xticklabels(source_labels, minor=False)
  # target words -> row labels
  ax.set_yticklabels(target_labels, minor=False)
  
  plt.xticks(rotation=45)

  #plt.tight_layout()
  plt.show()
开发者ID:VikingMew,项目名称:nematus,代码行数:26,代码来源:plot_heatmap.py


注:本文中的matplotlib.pyplot.xticks函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。