本文整理汇总了Python中matplotlib.pyplot.xscale函数的典型用法代码示例。如果您正苦于以下问题:Python xscale函数的具体用法?Python xscale怎么用?Python xscale使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了xscale函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_coefficient_plot
def make_coefficient_plot(table, positive_words, negative_words, l2_penalty_list):
cmap_positive = plt.get_cmap('Reds')
cmap_negative = plt.get_cmap('Blues')
xx = l2_penalty_list
plt.plot(xx, [0.]*len(xx), '--', lw=1, color='k')
table_positive_words = table.filter_by(column_name='word', values=positive_words)
table_negative_words = table.filter_by(column_name='word', values=negative_words)
del table_positive_words['word']
del table_negative_words['word']
for i in xrange(len(positive_words)):
color = cmap_positive(0.8*((i+1)/(len(positive_words)*1.2)+0.15))
plt.plot(xx, table_positive_words[i:i+1].to_numpy().flatten(),
'-', label=positive_words[i], linewidth=4.0, color=color)
for i in xrange(len(negative_words)):
color = cmap_negative(0.8*((i+1)/(len(negative_words)*1.2)+0.15))
plt.plot(xx, table_negative_words[i:i+1].to_numpy().flatten(),
'-', label=negative_words[i], linewidth=4.0, color=color)
plt.legend(loc='best', ncol=3, prop={'size':16}, columnspacing=0.5)
plt.axis([1, 1e5, -1, 2])
plt.title('Coefficient path')
plt.xlabel('L2 penalty ($\lambda$)')
plt.ylabel('Coefficient value')
plt.xscale('log')
plt.rcParams.update({'font.size': 18})
plt.tight_layout()
开发者ID:caschindler,项目名称:machine-learning,代码行数:30,代码来源:logistic_regression-gradient_ascent_l2_regularization.py
示例2: main
def main():
sample='q'
sm_bin='10.0_10.5'
catalogue = 'sm_9.5_s0.2_sfr_c-0.75_250'
#load in fiducial mock
filepath = './'
filename = 'sm_9.5_s0.2_sfr_c-0.8_Chinchilla_250_wp_fiducial_'+sample+'_'+sm_bin+'_cov.npy'
cov = np.matrix(np.load(filepath+filename))
diag = np.diagonal(cov)
filepath = cu.get_output_path() + 'analysis/central_quenching/observables/'
filename = 'sm_9.5_s0.2_sfr_c-0.8_Chinchilla_250_wp_fiducial_'+sample+'_'+sm_bin+'.dat'
data = ascii.read(filepath+filename)
rbins = np.array(data['r'])
mu = np.array(data['wp'])
#load in comparison mock
plt.figure()
plt.errorbar(rbins, mu, yerr=np.sqrt(np.diagonal(cov)), color='black')
plt.plot(rbins, wp, color='red')
plt.xscale('log')
plt.yscale('log')
plt.show()
inv_cov = cov.I
Y = np.matrix((wp-mu))
X = Y*inv_cov*Y.T
print(X)
示例3: plot_figure_commute
def plot_figure_commute(file_name):
f = open(file_name)
lines = f.readlines()
lines[0] = lines[0][:-1]
f.close()
probabilities = lines[0].split(" ")
xx = xrange(len(probabilities))
probabilities = [float(x) for x in probabilities]
plt.figure(figsize=(12, 10))
plt.plot(xx, probabilities, label="D(degree > x)")
plt.ylabel('Percentage of vertices which degree> x')
plt.xlabel('Degree')
plt.title("Cumulative function for degrees")
plt.legend(loc='upper right')
name = "results_graphs/"
if file_name == "temp_degrees/cumulative_temp.txt":
name += "ful_cumulative"
else:
name += "good_cumulative"
plt.savefig(name + '.png')
plt.figure(figsize=(12, 10))
plt.plot(xx, probabilities, label="log(D(degree > x))")
plt.legend(loc='upper right')
plt.title("Cumulative function for degrees in log/log coords")
plt.ylabel('Log of percentage of vertices which degree> x')
plt.xlabel('Log of degrees')
plt.xscale('log')
plt.yscale('log')
plt.savefig(name + '_log' + '.png')
示例4: pareto_graph
def pareto_graph(database, objectives=None):
'''Constructs a visualization of the movement of the best front over generations
The argument 'objectives' must be a list indicating the indices of the fitness values to be used.
The first two will be consumed. If the list has less than two elements, or if is not given, the
graph will be produced using the first two fitness values.
'''
if objectives is None or len(objectives) < 2:
objectives = [0, 1]
generations = []
if database.properties['highest_population'] < FRONT_COUNT:
generations = list(range(1, database.properties['highest_population'] + 1))
else:
step = database.properties['highest_population'] / FRONT_COUNT
generations = [round(i * step) for i in range(1, FRONT_COUNT + 1)]
for i, gen in enumerate(generations, start=1):
database.select(gen)
individual_data = [val for key, val in database.load_report().items()
if key.startswith('I') and val['rank'] == 1]
x_values = [val['fitness'][objectives[0]] for val in individual_data]
y_values = [val['fitness'][objectives[1]] for val in individual_data]
plt.plot(x_values, y_values,
color=str((FRONT_COUNT - i) / FRONT_COUNT),
linestyle='None',
marker='o',
markeredgecolor='white')
plt.title('Movement of best front')
plt.xscale('log')
plt.yscale('log')
plt.xlabel(database.properties['objective_names'][objectives[0]])
plt.ylabel(database.properties['objective_names'][objectives[1]])
plt.show()
示例5: fluence_dist
def fluence_dist(self):
""" Plots the fluence distribution and gives the mean and median fluence
values of the sample """
fluences = []
for i in range(0,len(self.fluences),1):
try:
fluences.append(float(self.fluences[i]))
except ValueError:
continue
fluences = np.array(fluences)
mean_fluence = np.mean(fluences)
median_fluence = np.median(fluences)
print('Mean Fluence =',mean_fluence,'(15-150 keV) [10^-7 erg cm^-2]')
print('Median Fluence =',median_fluence,'(15-150 keV) [10^-7 erg cm^-2]')
plt.figure()
plt.xlabel('Fluence (15-150 keV) [$10^{-7}$ erg cm$^{-2}$]')
plt.ylabel('Number of GRBs')
plt.xscale('log')
minimum, maximum = min(fluences), max(fluences)
plt.axvline(mean_fluence,color='red',linestyle='-')
plt.axvline(median_fluence,color='blue',linestyle='-')
plt.hist(fluences,bins= 10**np.linspace(np.log10(minimum),np.log10(maximum),20),color='grey',alpha=0.5)
plt.show()
示例6: dose_plot
def dose_plot(df,err,cols,scale='linear'):
n_rows = int(np.ceil(len(cols)/3.0))
plt.figure(figsize=(20,4 * n_rows))
subs = gridspec.GridSpec(n_rows, 3)
plt.subplots_adjust(hspace=0.54,wspace=0.27)
for col,sub in zip(cols,subs):
plt.subplot(sub)
for base in df['Base'].unique():
for drug in get_drugs_with_multiple_doses(filter_rows(df,'Base',base)):
data = thread_first(df,
(filter_rows,'Drug',drug),
(filter_rows,'Base',base),
(DF.sort, 'Dose'))
error = thread_first(err,
(filter_rows,'Drug',drug),
(filter_rows,'Base',base),
(DF.sort, 'Dose'))
if scale == 'linear':
plt.errorbar(data['Dose'],data[col],yerr=error[col])
title = "{} vs. Dose".format(col)
else:
plt.errorbar(data['Dose'],data[col],yerr=error[col])
plt.xscale('log')
title = "{} vs. Dose (Log Scale)".format(col)
plt.xticks(data['Dose'].values,data['Dose'].values)
plt.xlim(0.06,15)
label('Dose ({})'.format(data.Unit.values[0]), col,title,fontsize = 15)
plt.legend(df['Base'].unique(), loc = 0)
示例7: set_axis_properties
def set_axis_properties(p,metric,varying_parameter,group):
#Set major x-axis label
plt.xlabel(xlabel_names[varying_parameter])
#Set x-axis scale
xscale_args = xscale_arguments[(metric,varying_parameter)]
plt.xscale(xscale_args[0],**xscale_args[1])
#Set x-axis tick labels
#Get tick values
ticks = list(sp.unique(group[varying_parameter]))
#If an item is not in the tick dictionary for the bar plot, add it
if pltkind[(metric,varying_parameter)] is 'bar':
for item in ticks:
if item not in varying_xlabels[varying_parameter].keys():
varying_xlabels[varying_parameter][item] = '$' + str(item) +'$'
xlabels = [ varying_xlabels[varying_parameter][item] for item in ticks]
if pltkind[(metric,varying_parameter)] is 'bar':
p.set_xticks(sp.arange(len(ticks))+0.5)
plt.setp(p.set_xticklabels(xlabels), rotation=0)
else:
plt.xticks(ticks,xlabels)
plt.ylabel(ylabel_names[metric])
plt.grid('on')
示例8: plotCurves
def plotCurves(losses,rateOfExceedance,return_periods,lossLevels):
plt.figure(1, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k')
plt.scatter(losses,rateOfExceedance,s=20)
if len(return_periods) > 0:
annual_rate_exc = 1.0/np.array(return_periods)
for rate in annual_rate_exc:
if rate > min(rateOfExceedance):
plt.plot([min(losses),max(losses)],[rate,rate],color='red')
plt.annotate('%.6f' % rate,xy=(max(losses),rate),fontsize = 12)
plt.yscale('log')
plt.xscale('log')
plt.ylim([min(rateOfExceedance),1])
plt.xlim([min(losses),max(losses)])
plt.xlabel('Losses', fontsize = 16)
plt.ylabel('Annual rate of exceedance', fontsize = 16)
setReturnPeriods = 1/rateOfExceedance
plt.figure(2, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k')
plt.scatter(setReturnPeriods,losses,s=20)
if len(return_periods) > 0:
for period in return_periods:
if period < max(setReturnPeriods):
plt.plot([period,period],[min(losses),max(losses)],color='red')
plt.annotate(str(period),xy=(period,max(losses)),fontsize = 12)
plt.xscale('log')
plt.xlim([min(setReturnPeriods),max(setReturnPeriods)])
plt.ylim([min(losses),max(losses)])
plt.xlabel('Return period (years)', fontsize = 16)
plt.ylabel('Losses', fontsize = 16)
示例9: plot_netload_cache_size_sensitivity
def plot_netload_cache_size_sensitivity(show=True, save=True):
"""
Plot sensitivity of network load vs cache size
"""
# Parameters
T = TOPOLOGIES
C = C_RANGE
A = ALPHA_C_PLOT
LT = LINK_TYPES
# Execution
for t in T:
for a in [str(al) for al in A]:
for lt in LT:
plt.figure()
plt.title('Network load: LINK=%s T=%s A=%s' % (lt, t, a))
plt.ylabel('Average link load (Mbps)')
plt.xlabel('Cache to population ratio')
plt.xscale('log')
S = SummaryAnalyzer(path.join(SUMMARY_LOG_DIR, 'SUMMARY_NETWORK_LOAD.txt'))
for strategy in NETLOAD_STRATEGIES:
cond = (S.param['T'] == t) & (S.param['A'] == a) & (S.param['S'] == strategy) & (S.data['LinkType'] == lt)
plt.plot(S.param['C'][cond], S.data['NetworkLoad'][cond], style_dict[strategy])
plt.xlim(min(C), max(C))
plt.legend(tuple(netload_legend_list), prop={'size': LEGEND_SIZE}, loc='lower left')
if show: plt.show()
if save: plt.savefig(path.join(GRAPHS_DIR ,'NETLOAD_C_SENS_LT=%[email protected]=%[email protected]=%s.pdf' % (lt, t, a)), bbox_inches='tight')
示例10: __save
def __save(self, n, plot, sfile):
p.figure(figsize=sfile)
p.xlabel(plot.xlabel)
p.ylabel(plot.ylabel)
p.xscale(plot.xscale)
p.yscale(plot.yscale)
p.grid()
for curvetype, args, kwargs in plot.curves:
if curvetype == "plot":
p.plot(*args, **kwargs)
elif curvetype == "imshow":
p.imshow(*args, **kwargs)
elif curvetype == "hist":
p.hist(*args, **kwargs)
elif curvetype == "bar":
p.bar(*args, **kwargs)
p.axes().set_aspect(plot.aspect)
if plot.legend:
p.legend(shadow=0, loc=plot.loc)
if not os.path.isdir(plot.dir):
os.mkdir(plot.dir)
if plot.pgf:
p.savefig(plot.dir + plot.name + ".pgf")
print(plot.name + ".pgf")
if plot.pdf:
p.savefig(plot.dir + plot.name + ".pdf", bbox_inches="tight")
print(plot.name + ".pdf")
p.close()
示例11: plot_citation_graph
def plot_citation_graph(citation_graph, filename, plot_title):
# find the indegree_distribution
indeg_dist = in_degree_distribution(citation_graph)
# sort freq by keys
number_citations = sorted(indeg_dist.keys())
indeg_freq = [indeg_dist[n] for n in number_citations]
# normalize
total = sum(indeg_freq)
indeg_freq_norm = [freq / float(total) for freq in indeg_freq]
# calculate log/log, except for the first one (0)
#log_number_citations = [math.log10(x) for x in number_citations[1:]]
#log_indeg_freq_norm = [math.log10(x) for x in indeg_freq_norm[1:]]
plot(number_citations[1:], indeg_freq_norm[1:], 'o')
xscale("log")
yscale("log")
xlabel("log10 #citations")
ylabel("log10 Norm.Freq.")
title(plot_title)
grid(True)
savefig(filename)
show()
示例12: setDiffsPlot
def setDiffsPlot(CF,d0,ySym = True):
CFtext = [str(j)+',' for j in CF]
bText = [CFtext[0],r'...,$a_i$+c,...',CFtext[-1]]
CFtext = ''.join(CFtext)
bText= ''.join(bText)
CFtext = '[' + CFtext[:-1] + ']'
bText = '[' + bText[:-1] + ']'
print(CFtext)
plt.ylabel(r'$d^{crit}_b - d^{crit}_a$',fontsize=20)
plt.xlabel(r'Element changed',fontsize=20)
xmin, xmax, ymin, ymax = plt.axis()
if ySym:
plt.yscale('symlog',linthreshy=1e-15)
yLoc = [y*ymax for y in [.1, .01, .001]]
else:
yLoc = [y*(ymax-ymin)+ymin for y in [0.95, 0.85, 0.75]]
plt.plot([0,xmax],[0,0],'k--',label='_')
plt.text((xmax-xmin)*0.15,yLoc[0],r'$a = [a_i] =$'+CFtext,fontsize=15)
plt.text((xmax-xmin)*0.15,yLoc[1],r'$b_i = $'+bText,fontsize=15)
plt.text((xmax-xmin)*0.15,yLoc[2],r'$d_a^{crit} = $'+str(float(d0)),fontsize=15)
plt.legend(loc='best')
plt.xscale('symlog',linthreshx=1e-14)
# plt.yscale('log')
plt.show()
示例13: main
def main():
counter = n36.main()
plt.figure()
plt.xscale('log')
plt.yscale('log')
plt.plot(sorted(list(counter.values()), reverse=True), range(1, len(list(counter)) + 1))
plt.savefig('fig39.png')
示例14: nlp39
def nlp39(words):
# Zipfの法則:https://ja.wikipedia.org/wiki/%E3%82%B8%E3%83%83%E3%83%97%E3%81%AE%E6%B3%95%E5%89%87
# 語彙頻度
freq = {}
for word in words:
if word['pos'] == '動詞':
if not word['base'] in freq:
freq[word['base']] = 1
else:
freq[word['base']] += 1
count = 1
x = []
y = []
for word in sorted(freq, key=freq.get, reverse=True):
x.append(count)
y.append(freq[word])
count += 1
plt.xscale('log')
plt.yscale('log')
plt.plot(x, y, 'o')
plt.show()
示例15: PlotEDepSummary
def PlotEDepSummary(gFiles,nFiles,figureName='EDepSummary.png',tParse=GetThickness,
histKey='eDepHist'):
""" PlotEDepSummary
Plotss the energy deposition summary
"""
# Extrating the average values
gT = list()
gDep = list()
gDepError = list()
nT = list()
nDep = list()
nDepError = list()
for fname in gFiles:
f = TFile(fname,'r')
hist = f.Get(histKey)
gT.append(GetThickness(fname))
gDep.append(hist.GetMean())
gDepError.append(hist.GetMeanError())
for fname in nFiles:
f = TFile(fname,'r')
hist = f.Get(histKey)
nT.append(GetThickness(fname))
nDep.append(hist.GetMean())
nDepError.append(hist.GetMeanError())
# Plotting
plt.errorbar(gT,gDep,yerr=gDepError,fmt='r+')
plt.hold(True)
plt.errorbar(nT,nDep,yerr=nDepError,fmt='go')
plt.xlabel("Thickness (mm)")
plt.ylabel("Average Energy Deposition (MeV)")
plt.legend(["Co-60","Cf-252"])
plt.xscale("log")
plt.yscale("log")
plt.grid(True)
plt.savefig(figureName)