本文整理汇总了Python中matplotlib.pyplot.xlabel函数的典型用法代码示例。如果您正苦于以下问题:Python xlabel函数的具体用法?Python xlabel怎么用?Python xlabel使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了xlabel函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: visualize
def visualize(segmentation, expression, visualize=None, store=None, title=None, legend=False):
notes = []
onsets = []
values = []
param = ['Dynamics', 'Articulation', 'Tempo']
converter = NoteList()
converter.bpm = 100
if not visualize:
visualize = selectSubset(param)
for segment, expr in zip(segmentation, expression):
for note in segment:
onsets.append(converter.ticks_to_milliseconds(note.on)/1000.0)
values.append([expr[i] for i in visualize])
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(12, 4))
for i in visualize:
plt.plot(onsets, [v[i] for v in values], label=param[i])
plt.ylabel('Deviation')
plt.xlabel('Score time (seconds)')
if legend:
plt.legend(bbox_to_anchor=(0., 1), loc=2, borderaxespad=0.)
if title:
plt.title(title)
#dplot = fig.add_subplot(111)
#sodplot = fig.add_subplot(111)
#dplot.plot([i for i in range(len(deltas[0]))], deltas[0])
#sodplot.plot([i for i in range(len(sodeltas[0]))], sodeltas[0])
if store:
fig.savefig('plots/{0}.png'.format(store))
else:
plt.show()
示例2: showCumulOverlap
def showCumulOverlap(mode, modes, *args, **kwargs):
"""Show cumulative overlap using :func:`~matplotlib.pyplot.plot`.
:type mode: :class:`.Mode`, :class:`.Vector`
:arg modes: multiple modes
:type modes: :class:`.ModeSet`, :class:`.ANM`, :class:`.GNM`, :class:`.PCA`
"""
import matplotlib.pyplot as plt
if not isinstance(mode, (Mode, Vector)):
raise TypeError('mode must be NMA, ModeSet, Mode or Vector, not {0}'
.format(type(mode)))
if not isinstance(modes, (NMA, ModeSet)):
raise TypeError('modes must be NMA, ModeSet, or Mode, not {0}'
.format(type(modes)))
cumov = (calcOverlap(mode, modes) ** 2).cumsum() ** 0.5
if isinstance(modes, NMA):
arange = np.arange(0.5, len(modes)+0.5)
else:
arange = modes.getIndices() + 0.5
show = plt.plot(arange, cumov, *args, **kwargs)
plt.title('Cumulative overlap with {0}'.format(str(mode)))
plt.xlabel('{0} mode index'.format(modes))
plt.ylabel('Cumulative overlap')
plt.axis((arange[0]-0.5, arange[-1]+0.5, 0, 1))
if SETTINGS['auto_show']:
showFigure()
return show
示例3: showNormDistFunct
def showNormDistFunct(model, coords, *args, **kwargs):
"""Show normalized distance fluctuation matrix using
:func:`~matplotlib.pyplot.imshow`. By default, *origin=lower*
keyword arguments are passed to this function,
but user can overwrite these parameters."""
import math
import matplotlib
import matplotlib.pyplot as plt
normdistfunct = model.getNormDistFluct(coords)
if not 'origin' in kwargs:
kwargs['origin'] = 'lower'
matplotlib.rcParams['font.size'] = '14'
fig = plt.figure(num=None, figsize=(10,8), dpi=100, facecolor='w')
show = plt.imshow(normdistfunct, *args, **kwargs), plt.colorbar()
plt.clim(math.floor(np.min(normdistfunct[np.nonzero(normdistfunct)])), \
round(np.amax(normdistfunct),1))
plt.title('Normalized Distance Fluctution Matrix')
plt.xlabel('Indices', fontsize='16')
plt.ylabel('Indices', fontsize='16')
if SETTINGS['auto_show']:
showFigure()
return show
示例4: showOverlapTable
def showOverlapTable(modes_x, modes_y, **kwargs):
"""Show overlap table using :func:`~matplotlib.pyplot.pcolor`. *modes_x*
and *modes_y* are sets of normal modes, and correspond to x and y axes of
the plot. Note that mode indices are incremented by 1. List of modes
is assumed to contain a set of contiguous modes from the same model.
Default arguments for :func:`~matplotlib.pyplot.pcolor`:
* ``cmap=plt.cm.jet``
* ``norm=plt.normalize(0, 1)``"""
import matplotlib.pyplot as plt
overlap = abs(calcOverlap(modes_y, modes_x))
if overlap.ndim == 0:
overlap = np.array([[overlap]])
elif overlap.ndim == 1:
overlap = overlap.reshape((modes_y.numModes(), modes_x.numModes()))
cmap = kwargs.pop('cmap', plt.cm.jet)
norm = kwargs.pop('norm', plt.normalize(0, 1))
show = (plt.pcolor(overlap, cmap=cmap, norm=norm, **kwargs),
plt.colorbar())
x_range = np.arange(1, modes_x.numModes() + 1)
plt.xticks(x_range-0.5, x_range)
plt.xlabel(str(modes_x))
y_range = np.arange(1, modes_y.numModes() + 1)
plt.yticks(y_range-0.5, y_range)
plt.ylabel(str(modes_y))
plt.axis([0, modes_x.numModes(), 0, modes_y.numModes()])
if SETTINGS['auto_show']:
showFigure()
return show
示例5: showNormedSqFlucts
def showNormedSqFlucts(modes, *args, **kwargs):
"""Show normalized square fluctuations via :func:`~matplotlib.pyplot.plot`.
"""
import matplotlib.pyplot as plt
sqf = calcSqFlucts(modes)
args = list(args)
modesarg = []
i = 0
while i < len(args):
if isinstance(args[i], (VectorBase, ModeSet, NMA)):
modesarg.append(args.pop(i))
else:
i += 1
show = [plt.plot(sqf/(sqf**2).sum()**0.5, *args,
label='{0}'.format(str(modes)), **kwargs)]
plt.xlabel('Indices')
plt.ylabel('Square fluctuations')
for modes in modesarg:
sqf = calcSqFlucts(modes)
show.append(plt.plot(sqf/(sqf**2).sum()**0.5, *args,
label='{0}'.format(str(modes)), **kwargs))
if SETTINGS['auto_show']:
showFigure()
return show
示例6: scree_plot
def scree_plot(pca_obj, fname=None):
'''
Scree plot for variance & cumulative variance by component from PCA.
Arguments:
- pca_obj: a fitted sklearn PCA instance
- fname: path to write plot to file
Output:
- scree plot
'''
components = pca_obj.n_components_
variance = pca.explained_variance_ratio_
plt.figure()
plt.plot(np.arange(1, components + 1), np.cumsum(variance), label='Cumulative Variance')
plt.plot(np.arange(1, components + 1), variance, label='Variance')
plt.xlim([0.8, components]); plt.ylim([0.0, 1.01])
plt.xlabel('No. Components', labelpad=11); plt.ylabel('Variance Explained', labelpad=11)
plt.legend(loc='best')
plt.tight_layout()
if fname is not None:
plt.savefig(fname)
plt.close()
else:
plt.show()
return
示例7: draw_ranges_for_parameters
def draw_ranges_for_parameters(data, title='', save_path='./pictures/'):
parameters = data.columns.values.tolist()
# remove flight name parameter
for idx, parameter in enumerate(parameters):
if parameter == 'flight_name':
del parameters[idx]
flight_names = np.unique(data['flight_name'])
print len(flight_names)
for parameter in parameters:
plt.figure()
axis = plt.gca()
# ax.set_xticks(numpy.arange(0,1,0.1))
axis.set_yticks(flight_names)
axis.tick_params(labelright=True)
axis.set_ylim([94., 130.])
plt.grid()
plt.title(title)
plt.xlabel(parameter)
plt.ylabel('flight name')
colors = iter(cm.rainbow(np.linspace(0, 1,len(flight_names))))
for flight in flight_names:
temp = data[data.flight_name == flight][parameter]
plt.plot([np.min(temp), np.max(temp)], [flight, flight], c=next(colors), linewidth=2.0)
plt.savefig(save_path+title+'_'+parameter+'.jpg')
plt.close()
示例8: plotTestData
def plotTestData(tree):
plt.figure()
plt.axis([0,1,0,1])
plt.xlabel("X axis")
plt.ylabel("Y axis")
plt.title("Green: Class1, Red: Class2, Blue: Class3, Yellow: Class4")
for value in class1:
plt.plot(value[0],value[1],'go')
plt.hold(True)
for value in class2:
plt.plot(value[0],value[1],'ro')
plt.hold(True)
for value in class3:
plt.plot(value[0],value[1],'bo')
plt.hold(True)
for value in class4:
plt.plot(value[0],value[1],'yo')
plotRegion(tree)
for value in classPlot1:
plt.plot(value[0],value[1],'g.',ms=3.0)
plt.hold(True)
for value in classPlot2:
plt.plot(value[0],value[1],'r.', ms=3.0)
plt.hold(True)
for value in classPlot3:
plt.plot(value[0],value[1],'b.', ms=3.0)
plt.hold(True)
for value in classPlot4:
plt.plot(value[0],value[1],'y.', ms=3.0)
plt.grid(True)
plt.show()
示例9: plotJ
def plotJ(J_history,num_iters):
x = np.arange(1,num_iters+1)
plt.plot(x,J_history)
plt.xlabel(u"迭代次数",fontproperties=font) # 注意指定字体,要不然出现乱码问题
plt.ylabel(u"代价值",fontproperties=font)
plt.title(u"代价随迭代次数的变化",fontproperties=font)
plt.show()
示例10: plotISVar
def plotISVar():
plt.figure()
plt.title('Variance minimization problem (call).\nVertical lines mark the minima.')
for K in [0.6, 0.8, 1.0, 1.2]:
theta = np.linspace(-0.6, 2)
var = [BS.exactCallVar(K*s0, theta) for theta in theta]
minth = theta[np.argmin(var)]
line, = plt.plot(theta, var, label=str(K))
plt.axvline(minth, color=line.get_color())
plt.xlabel(r'$\theta$')
plt.ylabel('call variance')
plt.legend(title=r'$K/s_0$', loc='upper left')
plt.autoscale(tight=True)
plt.figure()
plt.title('Variance minimization problem (put).\nVertical lines mark the minima.')
for K in [0.8, 1.0, 1.2, 1.4]:
theta = np.linspace(-2, 0.5)
var = [BS.exactPutVar(K*s0, theta) for theta in theta]
minth = theta[np.argmin(var)]
line, = plt.plot(theta, var, label=str(K))
plt.axvline(minth, color=line.get_color())
plt.xlabel(r'$\theta$')
plt.ylabel('put variance')
plt.legend(title=r'$K/s_0$', loc='upper left')
plt.autoscale(tight=True)
示例11: plot_mpl_fig
def plot_mpl_fig():
rootdir = '/Users/catherinefielder/Documents/Research_Halos/HaloDetail'
cs = []
pops = []
for subdir, dirs, files in os.walk(rootdir):
head,tail = os.path.split(subdir)
haloname = tail
for file in files:
if file.endswith('_columnsadded'):
values = ascii.read(os.path.join(subdir, file), format = 'commented_header') #Get full path and access file
host_c = values[1]['host_c']
cs = np.append(cs, host_c)
pop = len(values['mvir(10)'])
pops = np.append(pops, pop)
print pop
plt.loglog(host_c, pop, alpha=0.8,label = haloname)
print "%s done. On to the next." %haloname
#plt.xscale('log')
#plt.yscale('log')
plt.xlabel('Host Concentration')
plt.ylabel('Nsat')
plt.title('Abundance vs. Host Concentration', ha='center')
#plt.legend(loc='best')
spearman = scipy.stats.spearmanr(cs, pops)
print spearman
示例12: display
def display(spectrum):
template = np.ones(len(spectrum))
#Get the plot ready and label the axes
pyp.plot(spectrum)
max_range = int(math.ceil(np.amax(spectrum) / standard_deviation))
for i in range(0, max_range):
pyp.plot(template * (mean + i * standard_deviation))
pyp.xlabel('Units?')
pyp.ylabel('Amps Squared')
pyp.title('Mean Normalized Power Spectrum')
if 'V' in Options:
pyp.show()
if 'v' in Options:
tokens = sys.argv[-1].split('.')
filename = tokens[0] + ".png"
input = ''
if os.path.isfile(filename):
input = input("Error: Plot file already exists! Overwrite? (y/n)\n")
while input != 'y' and input != 'n':
input = input("Please enter either \'y\' or \'n\'.\n")
if input == 'y':
pyp.savefig(filename)
else:
print("Plot not written.")
else:
pyp.savefig(filename)
示例13: scatter
def scatter(x, y, equal=False, xlabel=None, ylabel=None, xinvert=False, yinvert=False):
"""
Plot a scatter with simple formatting options
"""
plt.scatter(x, y, 200, color=[0.3, 0.3, 0.3], edgecolors="white", linewidth=1, zorder=2)
sns.despine()
if xlabel:
plt.xlabel(xlabel)
if ylabel:
plt.ylabel(ylabel)
if equal:
plt.axes().set_aspect("equal")
plt.plot([0, max([x.max(), y.max()])], [0, max([x.max(), y.max()])], color=[0.6, 0.6, 0.6], zorder=1)
bmin = min([x.min(), y.min()])
bmax = max([x.max(), y.max()])
rng = abs(bmax - bmin)
plt.xlim([bmin - rng * 0.05, bmax + rng * 0.05])
plt.ylim([bmin - rng * 0.05, bmax + rng * 0.05])
else:
xrng = abs(x.max() - x.min())
yrng = abs(y.max() - y.min())
plt.xlim([x.min() - xrng * 0.05, x.max() + xrng * 0.05])
plt.ylim([y.min() - yrng * 0.05, y.max() + yrng * 0.05])
if xinvert:
plt.gca().invert_xaxis()
if yinvert:
plt.gca().invert_yaxis()
示例14: tuning
def tuning(x, y, err=None, smooth=None, ylabel=None, pal=None):
"""
Plot a tuning curve
"""
if smooth is not None:
xs, ys = smoothfit(x, y, smooth)
plt.plot(xs, ys, linewidth=4, color="black", zorder=1)
else:
ys = asarray([0])
if pal is None:
pal = sns.color_palette("husl", n_colors=len(x) + 6)
pal = pal[2 : 2 + len(x)][::-1]
plt.scatter(x, y, s=300, linewidth=0, color=pal, zorder=2)
if err is not None:
plt.errorbar(x, y, yerr=err, linestyle="None", ecolor="black", zorder=1)
plt.xlabel("Wall distance (mm)")
plt.ylabel(ylabel)
plt.xlim([-2.5, 32.5])
errTmp = err
errTmp[isnan(err)] = 0
rng = max([nanmax(ys), nanmax(y + errTmp)])
plt.ylim([0 - rng * 0.1, rng + rng * 0.1])
plt.yticks(linspace(0, rng, 3))
plt.xticks(range(0, 40, 10))
sns.despine()
return rng
示例15: plotAlphas
def plotAlphas(datasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix):
"""
Plot the variation in the error with alpha for penalisation.
"""
for i, datasetName in enumerate(datasetNames):
#plt.figure(i)
for k in range(len(sampleMethods)):
outfileName = outputDir + datasetName + sampleMethods[k] + fileNameSuffix + ".npz"
data = numpy.load(outfileName)
errors = data["arr_0"]
meanMeasures = numpy.mean(errors, 0)
foldInd = 4
for i in range(sampleSizes.shape[0]):
plt.plot(cvScalings, meanMeasures[i, foldInd, 2:8], next(linecycler), label="m="+str(sampleSizes[i]))
plt.xlabel("Alpha")
plt.ylabel('Error')
xmin, xmax = cvScalings[0], cvScalings[-1]
plt.xlim((xmin,xmax))
plt.legend(loc="upper left")
plt.show()