当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.vlines函数代码示例

本文整理汇总了Python中matplotlib.pyplot.vlines函数的典型用法代码示例。如果您正苦于以下问题:Python vlines函数的具体用法?Python vlines怎么用?Python vlines使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了vlines函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot

def plot(learned_q, imitated_q):
    import matplotlib.pyplot as plt
    import matplotlib.gridspec as gridspec
    plt.ion()
    plt.figure(figsize=(16,9)) # Change this if figure is too big (i.e. laptop)
    gs = gridspec.GridSpec(1, 2, width_ratios=[1,2])
    
    while True:
        plt.subplot(gs[0])
        plt.cla()
        plt.title('Learned.')
        plt.legend(plt.plot(learned_q.get()), ['level1', 'envelope1', 'pitch1', 'centroid1'])
        plt.draw()

        plt.subplot(gs[1])
        plt.cla()
        plt.title('Listening + imitation.')
        input_data, sound = imitated_q.get()
        plt.plot(np.vstack( [input_data, sound] ))
        ylim = plt.gca().get_ylim()
        plt.vlines(input_data.shape[0], ylim[0], ylim[1])
        plt.gca().annotate('imitation starts', xy=(input_data.shape[0],0), 
                           xytext=(input_data.shape[0] + 10, ylim[0] + .1))
        plt.gca().set_ylim(ylim)
        plt.draw()

        plt.tight_layout()
开发者ID:axeltidemann,项目名称:self_dot,代码行数:27,代码来源:imitate_microphone2.py

示例2: plot_percolation_data

def plot_percolation_data(gvals, m, M):
    for var in gvals:
        plt.title(var)
        if len(gvals[var].shape) == 1 and var != 'p':
            plt.vlines([m,M], 0, np.max(gvals[var]))
            plt.scatter(gvals['p'], gvals[var])
            plt.show()
开发者ID:thomastaudt,项目名称:Network-Science,代码行数:7,代码来源:A31.py

示例3: plotOEM4strainsT

def plotOEM4strainsT(oemfilestrain1,strain1label,oemfilestrain2,strain2label,oemfilestrain3,strain3label,oemfilestrain4,strain4label,chromosome,showorigins,showreptime,reptimefile=''):
    
    # if showreptime is true, then grab all rep times for chromosome and bin the bases in earlyreptimebases and latereptimebass.
    if showreptime:
        with open(reptimefile) as f:
            reptimeforchrom = [line.strip().split('\t')[1:] for line in f.readlines() if line.strip().split('\t')[0]==chromosome]
        earlyreptimebases = [int(i[0]) for i in reptimeforchrom if float(i[1])<=30]
        latereptimebases = [int(i[0]) for i in reptimeforchrom if float(i[1])>30]    
    
    # Plot OEM for WT with origins if showorigins is TRUE, otherwise plot oem but don't show confirmed or likely orgins
    if showorigins:
        oem.plotOEM(oemfilestrain1,chromosome,True,411,strain1label,'green')
        plt.subplots_adjust(hspace=0.5)
        oem.plotOEM(oemfilestrain2,chromosome,True,412,strain2label,'blue')
        plt.subplots_adjust(hspace=0.5)
        oem.plotOEM(oemfilestrain3,chromosome,True,413,strain3label,'red')
        plt.subplots_adjust(hspace=0.5)
        oem.plotOEM(oemfilestrain4,chromosome,True,414,strain4label,'#FF7F00')
    else:
        oem.plotOEM(oemfilestrain1,chromosome,False,411,strain1label,'green')
        plt.subplots_adjust(hspace=0.5)
        oem.plotOEM(oemfilestrain2,chromosome,False,412,strain2label,'blue')
        plt.subplots_adjust(hspace=0.5)
        oem.plotOEM(oemfilestrain3,chromosome,False,413,strain3label,'red')
        plt.subplots_adjust(hspace=0.5)
        oem.plotOEM(oemfilestrain4,chromosome,False,414,strain4label,'#FF7F00')
    
    # if showreptime is true, plot vertical lines to indicate where the early and late replicating bases are
    if showreptime:
        for base in earlyreptimebases:
            plt.vlines(base,-1,1,colors='red')
        for base in latereptimebases:
            plt.vlines(base,-1,1,colors='black')  
    
    plt.show()
开发者ID:JayKu4418,项目名称:ForkConvergenceComparison,代码行数:35,代码来源:importantfunctions.py

示例4: _expand_dendrogram

def _expand_dendrogram(cNode,swc_tree,off_x,off_y,radius,transform='plain') :
    global max_width,max_height # middle name d.i.r.t.y.
    '''
    Gold old fashioned recursion... sys.setrecursionlimit()!
    '''
    place_holder_h = H_SPACE
    max_degree = swc_tree.degree_of_node(cNode)
    required_h_space = max_degree * place_holder_h
    start_x = off_x-(required_h_space/2.0)
    if(required_h_space > max_width) :
        max_width = required_h_space
    
    if swc_tree.is_root(cNode) :
        print 'i am expanding the root'
        cNode.children.remove(swc_tree.get_node_with_index(2))
        cNode.children.remove(swc_tree.get_node_with_index(3))
    
    for cChild in cNode.children :
        l = _path_between(swc_tree,cChild,cNode,transform=transform)
        r = cChild.content['p3d'].radius

        cChild_degree = swc_tree.degree_of_node(cChild)
        new_off_x = start_x + ( (cChild_degree/2.0)*place_holder_h )
        new_off_y = off_y+(V_SPACE*2)+l
        r = r if radius  else 1
        plt.vlines(new_off_x,off_y+V_SPACE,new_off_y,linewidth=r,colors=C)
        if((off_y+(V_SPACE*2)+l) > max_height) :
            max_height = off_y+(V_SPACE*2)+l

        _expand_dendrogram(cChild,swc_tree,new_off_x,new_off_y,radius=radius,transform=transform)

        start_x = start_x + (cChild_degree*place_holder_h)
        plt.hlines(off_y+V_SPACE,off_x,new_off_x,colors=C)
开发者ID:btorboist,项目名称:btmorph_v2,代码行数:33,代码来源:btviz.py

示例5: plot_area_vs_energy

    def plot_area_vs_energy(self, filename=None, show_save_energy=True):
        """
        Plot effective area vs. energy.
        """
        import matplotlib.pyplot as plt

        energy_hi = self.energy_hi.value
        effective_area = self.effective_area.value
        plt.plot(energy_hi, effective_area)
        if show_save_energy:
            plt.vlines(self.energy_thresh_hi.value, 1E3, 1E7, 'k', linestyles='--')
            plt.text(self.energy_thresh_hi.value - 1, 3E6,
                     'Safe energy threshold: {0:3.2f}'.format(
                         self.energy_thresh_hi),
                     ha='right')
            plt.vlines(self.energy_thresh_lo.value, 1E3, 1E7, 'k', linestyles='--')
            plt.text(self.energy_thresh_lo.value + 0.1, 3E3,
                     'Safe energy threshold: {0:3.2f}'.format(self.energy_thresh_lo))
        plt.xlim(0.1, 100)
        plt.ylim(1E3, 1E7)
        plt.loglog()
        plt.xlabel('Energy [TeV]')
        plt.ylabel('Effective Area [m^2]')
        if filename is not None:
            plt.savefig(filename)
            log.info('Wrote {0}'.format(filename))
开发者ID:JonathanDHarris,项目名称:gammapy,代码行数:26,代码来源:effective_area_table.py

示例6: funComputeRatioFromExperiment

def funComputeRatioFromExperiment(dataRatioRGBY, dataRatioRGBL, valLevelBasis, valLevelTarget, dataTargetY, dataBasisY, titleText, figureName):
    '''
    The function first first display the results.
    Then it does some computations because computations are always good.
    '''
    # do some interpolation
    interpInput, interpY       =  funInterpolationRatioDifferenceCurves(vecSearchLevel, dataRatioRGBY)
    interpInput, interpTargetY =  funInterpolationRatioDifferenceCurves(vecSearchLevel, dataTargetY)
    interpInput, interpBasisY  =  funInterpolationRatioDifferenceCurves(vecSearchLevel, dataBasisY)
    
    # figure to show the search of equivalent intensity between the patches
    fig = plt.figure()
    yMin = 0
    yMax = 4.2*np.max(interpTargetY)
    #print yMax

    # plot the differences and minimum
    plt.plot(interpInput, interpY[0,:],'r-', label="Y difference Red ")
    plt.plot(interpInput, interpY[1,:],'g-', label="Y difference Green")
    plt.plot(interpInput, interpY[2,:],'b-', label="Y difference Blue")

    # plot the measured intensity
    plt.plot(interpInput, interpBasisY[0,:],'r--', label="Y Red + basis ")
    plt.plot(interpInput, interpBasisY[1,:],'g--', label="Y Green + basis")
    plt.plot(interpInput, interpBasisY[2,:],'b--', label="Y Blue + basis")

    # plot the target patch who should stay stable
    plt.plot(interpInput, interpTargetY[0,:],'k-', label="Y target for red ")
    plt.plot(interpInput, interpTargetY[1,:],'k--',label="Y target for green")
    plt.plot(interpInput, interpTargetY[2,:],'k-', label="Y target for blue")

    # plot the minimum
    minDiffInterpRGB, indRGB = funGetSomeMinimumSingleCurve(interpY)
    plt.plot(indRGB[0], minDiffInterpRGB[0],'r^')
    plt.plot(indRGB[1], minDiffInterpRGB[1],'g^')
    plt.plot(indRGB[2], minDiffInterpRGB[2],'b^')
    plt.vlines(indRGB[0],0,minDiffInterpRGB[0], colors='r',linestyles='--')
    plt.vlines(indRGB[1],0,minDiffInterpRGB[1], colors='g',linestyles='--')
    plt.vlines(indRGB[2],0,minDiffInterpRGB[2], colors='b',linestyles='--')

    # plot the experiment information
    plt.vlines(valLevelBasis[0], yMin, yMax, colors='k', linestyles='--', label='Basis')
    plt.vlines(valLevelTarget, yMin, yMax, colors='k', linestyles='--', label='Target')
    plt.text(valLevelBasis[0], yMax*0.9,'Basis = '+repr(valLevelBasis[0]), ha="left",bbox = dict(boxstyle='round', fc="w", ec="k"))
    plt.text(valLevelTarget, yMax*0.8,'Target = '+repr(valLevelTarget), ha="left",bbox = dict(boxstyle='round', fc="w", ec="k"))

    plt.ylabel('Difference in Y')
    plt.xlabel('Digital input')
    plt.xlim(0,255)
    plt.title('Difference Curve for Ratio')
    plt.ylim(yMin, yMax)
    plt.title(titleText)
    #plt.legend(loc=2)
    plt.draw()
    plt.savefig(figureName)

    ratioRGB = np.zeros([3])
    ratioRGB[0], ratioRGB[1], ratioRGB[2] = indRGB[0], indRGB[1], indRGB[2]

    return ratioRGB
开发者ID:mrbonsoir,项目名称:devForWebCam,代码行数:60,代码来源:computeRatioWithWebcam.py

示例7: _plotKmerFixed

def _plotKmerFixed(min_limit, max_limit, kmer, output_name):
    """Old kmerplot, kept just in case...
    """
    Kmer_histogram = pd.io.parsers.read_csv("histogram.hist", sep='\t',
            header=None)
    Kmer_coverage = Kmer_histogram[Kmer_histogram.columns[0]].tolist()
    Kmer_count = Kmer_histogram[Kmer_histogram.columns[1]].tolist()
    Kmer_freq = [Kmer_coverage[i]*Kmer_count[i] for i in \
            range(len(Kmer_coverage))]
    #coverage peak, disregarding initial peak
    kmer_freq_peak = Kmer_freq.index(max(Kmer_freq[min_limit:max_limit]))
    kmer_freq_peak_value=max(Kmer_freq[min_limit:max_limit])

    xmax = max_limit
    ymax = kmer_freq_peak_value + (kmer_freq_peak_value*0.30)

    plt.plot(Kmer_coverage, Kmer_freq)
    plt.title("K-mer length = {}".format(kmer))
    plt.xlim((0,xmax))
    plt.ylim((0,ymax))
    plt.vlines(kmer_freq_peak, 0, kmer_freq_peak_value, colors='r',
            linestyles='--')
    plt.text(kmer_freq_peak, kmer_freq_peak_value+2000, str(kmer_freq_peak))
    plotname = "{}".format(output_name)
    plt.savefig(plotname)
    plt.clf()
    return 0
开发者ID:espre05,项目名称:NouGAT,代码行数:27,代码来源:QCcontrol.py

示例8: plot_unique_by_date

def plot_unique_by_date(alignment_summaries, metadata):
    plt.figure(figsize=(8, 5.5))
    df_meta = pd.DataFrame.from_csv(metadata)
    df_meta['Date Produced'] = pd.to_datetime(df_meta['Date Produced'])

    alndata = []
    for summary in alignment_summaries:
        alndata.append(simpleseq.sam.get_alignment_metadata(summary))

    unique = pd.Series(np.array([s['uniq_rate'] for s in alndata]),
                       index=alignment_summaries)

    # plot unique alignments
    index = df_meta.index.intersection(unique.index)
    order = df_meta.loc[index].sort(columns='Date Produced', ascending=False).index
    left = np.arange(len(index))
    height = unique.ix[order]
    width = 0.9
    plt.barh(left, height, width)
    plt.yticks(left + 0.5, order, fontsize=10)
    ymin, ymax = 0, len(left)
    plt.ylim((ymin, ymax))
    plt.xlabel('percentage')
    plt.title('comparative alignment summary')
    plt.ylabel('time (descending)')

    # plot klein in-drop line
    plt.vlines(unique['Klein_in_drop'], ymin, ymax, color='indianred', linestyles='--')

    sns.despine()
    plt.tight_layout()
开发者ID:ambrosejcarr,项目名称:simpleseq,代码行数:31,代码来源:plot.py

示例9: plotRaster

def plotRaster(xsg, ax=None, height=1.):
    """Creates raster plot from a merged or unmerged XSG dictionary.
    Note that the dictionary has to have the key 'spikeTimes', which is 
    generated by detectSpikes().  The value of this key is a single numpy array
    with spike loctions in samples (or a list of such arrays).

    Note that we plot these based on the size of the traces themselves.
    This works because we split up our acquisitions, but in general, 
    we might want to only plot regions of the raster.  plt.xlim() should
    be able to be used post-hoc for this.

    :param: - xsg - a merged or unmerged XSG dictionary with a 'spikeTimes' entry
    :param: - ax - optional, a matplotlib axis to plot onto
    :param: - height - optional, spacing for the rasters
    """
    if ax is None:
        ax = plt.gca() # otherwise it'll plot on the top figure

    try:
        if type(xsg['spikeTimes']) is list:
            for trial, trace in enumerate(xsg['spikeTimes']):
                plt.vlines(trace, trial, trial+height)
            plt.ylim(len(xsg['spikeTimes']), 0)
            plt.xlim(0,float(xsg['ephys']['chan0'].shape[0]) / xsg['sampleRate'][0] * 1000.0)

        else:
            plt.vlines(xsg['spikeTimes'], 0, height)
            plt.ylim((0,1))
            plt.xlim(0,float(xsg['ephys']['chan0'].shape[0]) / xsg['sampleRate'] * 1000.0)

        plt.xlabel('time (ms)')
        plt.ylabel('trials')

    except:
        print 'No spike times found!'
开发者ID:BCJongbloets,项目名称:d_code,代码行数:35,代码来源:extraCellularRoutines.py

示例10: plot

    def plot(self):
        global TESTING, UNITS, HEIGHTS
        '''Prepares the data using self.prepare_data and then
        graphs the data on a plot.'''
        self.prepare_data()

        plt.plot(HEIGHTS, self.data)
        plt.hlines(self.significant_shear, 0, HEIGHTS[-1])
        plt.vlines(self.significant_shear_height, -1, 2)
        print 'Significant shear at image {0}'.format(self.x_significant_shear)
        if not TESTING:
            print 'Theoretical significant shear at height {0} {1}'.format(self.significant_shear_height, UNITS)

        plt.ylim([-1, 2])
        plt.xlim([HEIGHTS[0], HEIGHTS[-1]])
        
        plt.xlabel('Height ({0})'.format(UNITS))
        plt.ylabel('Coverage')
        plt.title(self.dp_path.split('/')[-1])
        
        try:
            os.mkdir('{0}/res'.format(self.dp_path))
        except:
            pass
        plt.savefig('{0}/res/results.png'.format(self.dp_path))
        with open('{0}/res/results.txt'.format(self.dp_path), 'w') as f:
            global MODE
            f.write('{0}\nMODE {1}\n'.format(str(self.significant_shear_height), MODE))
开发者ID:niwatoribaka,项目名称:yeast-counter,代码行数:28,代码来源:yeast.py

示例11: estPath

def estPath(values):
    """estimates path
    Args:
       values: dict of x and y
    Returns:
       alphas: regularization lambdas
       coefs: coef matrix for features and alphas
    """
    X,y = values["x"], values["y"]
    alphas, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True)
    return alphas,coefs

    print alphas
    print coefs
    print coefs[:,1]
    exit(1)
    xx = np.sum(np.abs(coefs.T), axis=1)
    xx /= xx[-1]

    plt.plot(xx, coefs.T)
    ymin, ymax = plt.ylim()
    plt.vlines(xx, ymin, ymax, linestyle='dashed')
    plt.xlabel('|coef| / max|coef|')
    plt.ylabel('Coefficients')
    plt.title('LASSO Path')
    plt.axis('tight')
    plt.show()
    plt.savefid("larspath.png")
开发者ID:mkleyman,项目名称:geneexpress,代码行数:28,代码来源:reader.py

示例12: plot_assumption_free

def plot_assumption_free(scores, data, bins=50):
    """
    Plots the scores from the analysis using the assumption free algorithm.
    """
    plt.figure()
    plt.subplot(2, 1, 1)
    (data.acc / data.acc.max()).plot()
    (data.hr / data.hr.max()).plot()
    data.ratio_log.plot()
    plt.legend(loc='best')
    plt.subplot(2, 1, 2)
    plt.plot(data.index[:len(scores)], scores)

    scores = [x for x in scores if abs(x) > 10 ** -10]
    s_mean, sigma = norm.fit(scores)
    plt.figure()
    plt.hist(scores,  bins=50, normed=True)
    plt.plot(bins, norm.pdf(bins, loc=s_mean, scale=sigma))
    vlin = linspace(s_mean - 3 * sigma, s_mean + 3 * sigma, 13)
    step = int(256 / ((len(vlin) - 1) / 2))
    colors = linspace(0, 1, 256)[::step][:(len(vlin) - 1) / 2]
    colors = [(c, 0, 0) for c in colors]
    colors += [(1, 1, 1)]
    colors += [(0, c, 0) for c in reversed(colors)]
    plt.vlines(vlin.tolist()[1:], 0, 1, colors[1:])
开发者ID:casyazmon,项目名称:mars_city,代码行数:25,代码来源:plot_data.py

示例13: plot_result

    def plot_result(self, list_of_res, extra_txt='', dir_path='', big_figure=True, gui=False):
        if not gui or self.show:
            if big_figure:
                plt.figure(figsize=(10, 14))
            else:
                plt.figure()

        cpt = 1
        color = ['b', 'r', 'g', 'm', 'c', 'y', 'k']
        for key in list_of_res:
            plt.subplot(len(list_of_res.keys()), 1, cpt)
            plt.plot(list_of_res[key], color[cpt%len(color)], label=key)
            plt.ylabel(key, rotation=0)
            plt.ylim(-0.2, 1.2)
            for i in range(len(list_of_res['gnd_truth'])):
                if list_of_res['gnd_truth'][i-1] != list_of_res['gnd_truth'][i]:
                    plt.vlines(i, -0.2, len(list_of_res)*1.2+0.2, 'b', '--')
            cpt += 1

        plt.tight_layout()

        if self.save:
            plt.savefig(dir_path + 'result' + extra_txt + self.ext_img, dpi=100)

        if self.show:
            plt.show()
        else:
            if gui:
                plt.clf()
            else:
                plt.close()
开发者ID:scauglog,项目名称:brain_record_toolbox,代码行数:31,代码来源:cpp_file_tools.py

示例14: analyse_given_data_set

def analyse_given_data_set(data):
    # Confirm that data has been read and output properties of file
    number_of_players = len(data)
    print "Data file read with %s players" % number_of_players

    # Calculating mean of guesses
    first_guess_mean = sum([e[1] for e in data]) / number_of_players
    print "Mean of the guess: %s so 2/3rds of mean is: %s" % (first_guess_mean, 2 * first_guess_mean / 3)

    first_guess_distance = [abs(e[1] - 2 * first_guess_mean / 3)for e in data]
    winning_first_guess = data[first_guess_distance.index(min(first_guess_distance))][1]
    print "Winning guess: %s" % winning_first_guess

    # Display winner
    print "The winning user name(s) are/is:"
    for e in data:
        if e[1] == winning_first_guess:
            print "\t" + e[0]
            print "\t\t" + e[0] + " guessed " + e[4] + " time(s) with the last guess on the " + e[3] + " (with url: " + e[2] + ")"

    # Plot histograms of guesses using matplotlib
    plt.figure()
    plt.hist([e[1] for e in data], bins=20, label='Guess', normed='True')
    plt.title("Two thirds of the average game ($N=%s$)." % number_of_players)
    plt.xlabel("Guess")
    plt.ylabel("Probability")
    max_y = plt.ylim()[1]
    plt.vlines(winning_first_guess, 0, max_y, label='Winning Guess: %s' % winning_first_guess, color='blue')
    plt.ylim(0, max_y)
    plt.xlim(0, 100)
    plt.legend()
    plt.savefig("Results_for_webapp.png")
开发者ID:drvinceknight,项目名称:two_thirds_of_the_average_game,代码行数:32,代码来源:analyse_data_from_app_engine.py

示例15: plot_zrtt_treshold

def plot_zrtt_treshold(data, output_path):
    threshold = 1
    gateways, zrtts = [], []
    for hop in data:
        ip, pais, zrtt = hop
        gateways.append(ip+"\n"+pais)
        zrtts.append(float(zrtt))
    gateways.reverse()
    zrtts.reverse()
    
    fig = plt.figure()
    y_pos = np.arange(len(gateways))
    plt.barh(y_pos, zrtts, align='center', alpha=0.4)
    plt.yticks(y_pos, gateways, horizontalalignment='right', fontsize=9)
    plt.title('ZRTTs para cada hop')
    plt.xlabel('ZRTT')
    plt.ylabel('Hop')

    # Line at y=0
    plt.vlines(0, -1, len(gateways), alpha=0.4)

    # ZRTT threshold
    plt.vlines(threshold, -1, len(gateways), linestyle='--', color='b', alpha=0.4)
    plt.text(threshold, len(gateways) - 1, 'Umbral', rotation='vertical',
             verticalalignment='top', horizontalalignment='right')
    fig.set_size_inches(6, 9)
    plt.tight_layout() 
    plt.savefig(output_path, dpi=1000, box_inches='tight')
开发者ID:nlasso,项目名称:Redes,代码行数:28,代码来源:plot.py


注:本文中的matplotlib.pyplot.vlines函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。