本文整理汇总了Python中matplotlib.pyplot.tick_params函数的典型用法代码示例。如果您正苦于以下问题:Python tick_params函数的具体用法?Python tick_params怎么用?Python tick_params使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了tick_params函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_2D_offsets
def plot_2D_offsets(df, stat_key, prefices=["Delta_x_", "Delta_y_"],
suffices=["_x", "_y"], prefix_bool=1):
for i, key in enumerate(stat_key) :
plt.axes().set_aspect('equal')
if prefix_bool:
fixed_keys = [prefices[0] + key, prefices[1] + key]
else:
fixed_keys = [key + suffices[0], key + suffices[1]]
plt.plot(
np.array(df[fixed_keys[0]]),
np.array(df[fixed_keys[1]]), 'b.', alpha=0.05
)
biweight_loc = (
biweight_location(df[fixed_keys[0]]),
biweight_location(df[fixed_keys[1]]))
# The red cross is the biweight location along each dimension
plt.plot(biweight_loc[0], biweight_loc[1],
'rx', mew=2.)
plt.tick_params(labeltop='off', labelright='off')
plt.axes().yaxis.set_ticks_position('left')
plt.axes().xaxis.set_ticks_position('bottom')
plt.xlim(-300, 300)
plt.ylim(-300, 300)
plt.title(key + ', biweight_loc = {0:.2f}, {1:.2f}'.format(
*biweight_loc))
plt.show()
plt.clf()
示例2: plot_images
def plot_images(data_list, data_shape="auto", fig_shape="auto"):
"""
plotting data on current plt object.
In default,data_shape and fig_shape are auto.
It means considered the data as a sqare structure.
"""
n_data = len(data_list)
if data_shape == "auto":
sqr = int(n_data ** 0.5)
if sqr * sqr != n_data:
data_shape = (sqr + 1, sqr + 1)
else:
data_shape = (sqr, sqr)
plt.figure(figsize=data_shape)
for i, data in enumerate(data_list):
plt.subplot(data_shape[0], data_shape[1], i + 1)
plt.gray()
if fig_shape == "auto":
fig_size = int(len(data) ** 0.5)
if fig_size ** 2 != len(data):
fig_shape = (fig_size + 1, fig_size + 1)
else:
fig_shape = (fig_size, fig_size)
Z = data.reshape(fig_shape[0], fig_shape[1])
plt.imshow(Z, interpolation="nearest")
plt.tick_params(labelleft="off", labelbottom="off")
plt.tick_params(axis="both", which="both", left="off", bottom="off", right="off", top="off")
plt.subplots_adjust(hspace=0.05)
plt.subplots_adjust(wspace=0.05)
示例3: __init__
def __init__(self):
# 図を描く大きさと、図の変数名を宣言
fig = plt.figure(figsize=(5, 5))
ax = plt.gca()
# 赤い壁を描く
plt.plot([1, 1], [0, 1], color='red', linewidth=2)
plt.plot([1, 2], [2, 2], color='red', linewidth=2)
plt.plot([2, 2], [2, 1], color='red', linewidth=2)
plt.plot([2, 3], [1, 1], color='red', linewidth=2)
# 状態を示す文字S0~S8を描く
plt.text(0.5, 2.5, 'S0', size=14, ha='center')
plt.text(1.5, 2.5, 'S1', size=14, ha='center')
plt.text(2.5, 2.5, 'S2', size=14, ha='center')
plt.text(0.5, 1.5, 'S3', size=14, ha='center')
plt.text(1.5, 1.5, 'S4', size=14, ha='center')
plt.text(2.5, 1.5, 'S5', size=14, ha='center')
plt.text(0.5, 0.5, 'S6', size=14, ha='center')
plt.text(1.5, 0.5, 'S7', size=14, ha='center')
plt.text(2.5, 0.5, 'S8', size=14, ha='center')
plt.text(0.5, 2.3, 'START', ha='center')
plt.text(2.5, 0.3, 'GOAL', ha='center')
# 描画範囲の設定と目盛りを消す設定
ax.set_xlim(0, 3)
ax.set_ylim(0, 3)
plt.tick_params(axis='both', which='both', bottom=False, top=False,
labelbottom=False, right=False, left=False, labelleft=False)
self.fig = fig
self.ax = ax
示例4: chartProperties
def chartProperties(counter,path):
seen_properties = sorted(counter, key=lambda x: x[1],reverse=True)
seen_values_pct = map(itemgetter(1), tupleCounts2Percents(seen_properties))
seen_values_pct = ['{:.1%}'.format(item)for item in seen_values_pct]
plt.figure()
numberchart = plt.bar(range(len(seen_properties)), map(itemgetter(1), seen_properties), width=0.9,alpha=0.6)
plt.xticks(range(len(seen_properties)), map(itemgetter(0), seen_properties),rotation=90,ha='left')
plt.ylabel('Occurrences')
plot_margin = 1.15
x0, x1, y0, y1 = plt.axis()
plt.axis((x0,
x1,
y0,
y1*plot_margin))
plt.tick_params(axis='both', which='major', labelsize=8)
plt.tick_params(axis='both', which='minor', labelsize=8)
plt.tight_layout()
autolabel(numberchart,seen_values_pct)
plt.savefig(path)
plt.clf()
示例5: test_rotated_labels_parameters_no_ticks
def test_rotated_labels_parameters_no_ticks():
fig, ax = __plot()
ax.xaxis.set_ticks([])
plt.tick_params(axis='x',
which='both',
bottom='off',
top='off')
plt.tick_params(axis='y',
which='both',
left='off',
right='off')
# convert to tikz file
_, tmp_base = tempfile.mkstemp()
tikz_file = tmp_base + '_tikz.tex'
matplotlib2tikz.save(
tikz_file,
figurewidth='7.5cm'
)
# close figure
plt.close(fig)
# delete file
os.unlink(tikz_file)
return
示例6: plot_first_k_numbers
def plot_first_k_numbers(X,k):
m = X.shape[0]
k = min(m,k)
j = int(round(k / 10.0))
fig, ax = plt.subplots(j,10)
for i in range(k):
w=X[i,:]
w=w.reshape(28,28)
ax[i/10, i%10].imshow(w, cmap=plt.cm.gist_yarg, interpolation='nearest', aspect='equal')
ax[i/10, i%10].axis('off')
plt.tick_params(
axis='x', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom='off', # ticks along the bottom edge are off
top='off', # ticks along the top edge are off
labelbottom='off')
plt.tick_params(
axis='y', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
left='off',
right='off', # ticks along the top edge are off
labelleft='off')
fig.show()
示例7: plot_forces_violinplots
def plot_forces_violinplots(experiment):
ensemble = experiment.observations.kinematics
ensembleF = ensemble.loc[
(ensemble['position_x'] > 0.25) & (ensemble['position_x'] < 0.95),
['totalF_x', 'totalF_y', 'totalF_z',
'randomF_x', 'randomF_y', 'randomF_z',
'upwindF_x',
'wallRepulsiveF_x', 'wallRepulsiveF_y', 'wallRepulsiveF_z',
'stimF_x', 'stimF_y', 'stimF_z']] #== Nans
# plot Forces
# f, axes = plt.subplots(2, 2, figsize=(9, 9), sharex=True, sharey=True)
## forcefig = plt.figure(5, figsize=(9, 8))
## gs2 = gridspec.GridSpec(2, 2)
## Faxs = [fig.add_subplot(ss) for ss in gs2]
forcefig = plt.figure()
# Faxs1 = forcefig.add_subplot(211)
# Faxs2 = forcefig.add_subplot(212)
sns.violinplot(ensembleF, lw=3, alpha=0.7, palette="Set2")
# tF = sns.jointplot('totalF_x', 'totalF_y', ensemble, kind="hex", size=10)
plt.suptitle("Force distributions")
# plt.xticks(range(4,((len(alignments.keys())+1)*4),4), [i[1] for i in medians_sgc], rotation=90, fontsize = 4)
plt.tick_params(axis='x', pad=4)
plt.xticks(rotation=40)
# remove_border()
plt.tight_layout(pad=1.8)
plt.ylabel("Force magnitude distribution (newtons)")
fileappend, path, agent = get_agent_info(experiment.agent)
plt.savefig(os.path.join(path, "Force Distributions" + fileappend + FIG_FORMAT))
plt.show()
示例8: graph
def graph(csv_file, filename, bytes2str):
'''Create a line graph from a two column csv file.'''
unit = configs['unit']
date, value = np.loadtxt(csv_file, delimiter=',', unpack=True,
converters={0: bytes2str}
)
fig = plt.figure(figsize=(10, 3.5))
fig.add_subplot(111, axisbg='white', frameon=False)
rcParams.update({'font.size': 9})
plt.plot_date(x=date, y=value, ls='solid', linewidth=2, color='#FB921D',
fmt=':'
)
title = "Sump Pit Water Level {}".format(time.strftime('%Y-%m-%d %H:%M'))
title_set = plt.title(title)
title_set.set_y(1.09)
plt.subplots_adjust(top=0.86)
if unit == 'imperial':
plt.ylabel('inches')
if unit == 'metric':
plt.ylabel('centimeters')
plt.xlabel('Time of Day')
plt.xticks(rotation=30)
plt.grid(True, color='#ECE5DE', linestyle='solid')
plt.tick_params(axis='x', bottom='off', top='off')
plt.tick_params(axis='y', left='off', right='off')
plt.savefig(filename, dpi=72)
示例9: stationarity
def stationarity(timeseries):
#Determing rolling statistics
rol_mean = timeseries.rolling(window=12).mean()
rol_std = timeseries.rolling(window=12).std()
#Plot rolling statistics:
fig, ax = plt.subplots()
plt.grid(color='grey', which='major', axis='y', linestyle='--')
plt.plot(timeseries, color='blue', label='Original', linewidth=1.25)
plt.plot(rol_mean, color='red', label='Rolling Mean', linewidth=1.25)
plt.plot(rol_std, color='black', label = 'Rolling Std', linewidth=1.25)
plt.legend(loc='best')
title = headers[1], data[index].iloc[0], '-' ,data[index].iloc[-1]
plt.title(title)
plt.tick_params(axis="both", which="both", bottom="on", top="off",
labelbottom="on", left="off", right="off", labelleft="on")
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.xaxis.set_ticks_position('bottom')
fig.title = ('stationarity.png')
fig.savefig(fig.title, bbox_inches="tight")
#Perform Dickey-Fuller test:
print ('Results of Dickey-Fuller Test:\n')
df_test = adfuller(timeseries, autolag='AIC')
df_output = pd.Series(df_test[0:4], index=['Test Statistic','p-value','#Lags Used','No. of Observations Used'])
for key,value in df_test[4].items():
df_output['Critical Value (%s)'%key] = value
print (df_output.round(3))
示例10: SetAxes
def SetAxes(legend=False):
f_b = 0.164
f_star = 0.01
err_b = 0.006
err_star = 0.004
f_gas = f_b - f_star
err_gas = np.sqrt(err_b**2 + err_star**2)
plt.axhline(y=f_gas, ls='--', c='k', label='', zorder=-1)
x = np.linspace(.0,2.,1000)
plt.fill_between(x, y1=f_gas - err_gas, y2=f_gas + err_gas, color='k', alpha=0.3, zorder=-1)
plt.text(.6, f_gas+0.006, r'f$_{gas}$', verticalalignment='bottom', size='large')
plt.xlabel(r'r/r$_{vir}$', size='x-large')
plt.ylabel(r'f$_{gas}$ ($<$ r)', size='x-large')
plt.xscale('log')
plt.xticks([1./1.9, 1.33/1.9, 1, 1.5, 2.],[r'r$_{500}$', r'r$_{200}$', 1, 1.5, 2], size='large')
#plt.yticks([.1, .2], ['0.10', '0.20'])
plt.tick_params(length=10, which='major')
plt.tick_params(length=5, which='minor')
plt.xlim([0.4,1.5])
plt.minorticks_on()
if legend:
plt.legend(loc=0, prop={'size':'small'}, markerscale=0.7, numpoints=1, ncol=2)
示例11: histogram
def histogram(x, y, xlabel=None, ylabel=None, title=None, out=None, highlight=None):
plt.bar(range(len(x)), y, color='b', alpha=0.6, linewidth=0, align='center')
# if highlight is not None:
# barlist[highlight].set_color('r')
# rect = barlist[highlight]
# height = rect.get_height()
# width = rect.get_width()
# plt.text(rect.get_x() + width/2., height+1, "%.2f%%" % float(height), ha='center', va='center')
plt.xticks(range(len(x)), x, ha='center', va='top', rotation='vertical')
plt.tick_params(axis='y', labelsize='x-small')
# plt.xlim([-1, len(x)])
# plt.ylim([0, y[0]+((y[0]/100)*10)])
# plt.axis('auto')
# plt.title(title)
plt.gca().yaxis.grid(True)
if xlabel != None and ylabel != None:
plt.xlabel(xlabel)
plt.ylabel(ylabel)
if out == None:
plt.show()
else:
plt.savefig("../PLOT/" + out + ".jpg")
plt.show()
示例12: drawMean
def drawMean(ctype, filename, titulo, yaxis, comp, *args):
plt.switch_backend('Qt4Agg')
fig = plt.figure(figsize=(28, 5))
ax = fig.add_subplot(1,2,1)
means = []
for v in comp:
means.append(np.mean(v))
col = ['r', 'b', 'g', 'm', 'c', 'y', 'r', 'b', 'g', 'm', 'c', 'y']
if len(comp) == 16:
col = ['r', 'r', 'g', 'g', 'g', 'b', 'b', 'b', 'c', 'c', 'c', 'm', 'm', 'm', 'y', 'y', 'y' ]
if len(comp) == 12:
col = ['r', 'r' ,'b','b','g', 'g','m', 'm', 'c', 'c', 'y' ,'y']
if len(comp) == 13:
col = ['r', 'r', 'r','b','b','g', 'g','m', 'm', 'c', 'c', 'y' ,'y']
if len(comp) == 11:
col = ['r' ,'b','b','g', 'g','m', 'm', 'c', 'c', 'y' ,'y']
ax.grid( b=True, linestyle='-', axis = 'y', linewidth=1, zorder=1)
if len(comp) < 7:
ax.bar( range(1, int(ctype) + 1), means, align='center', color=col[0: int(ctype) + 1], zorder = 10, width = 0.6)
else:
ax.bar( range(1, int(ctype) + 1), means, align='center', color=col[0: int(ctype) + 1], zorder = 10)
plt.title(titulo)
labels = [i for i in args]
plt.ylabel(yaxis+' (promedio)')
plt.tick_params(labelsize = 7)
plt.xticks(range(1, (int(ctype)) + 1), labels)
plt.savefig(filename+' (promedio).png', bbox_inches = 'tight')
plt.xticks()
val_strings = ["%10.10f" % x for x in means ]
with open(filename + '_promedio.txt', 'w') as file_:
for k in range(0, len(comp)):
file_.write(labels[k] + " " + val_strings[k] + "\n")
示例13: histogram
def histogram(X, z, colors=['#1F77B4', '#FF7F0E'], fname='plot.pdf',
xlim=None, bins=500):
"""Plot histograms of 1-dimensional data.
Input: X = data matrix
z = class labels
color = color for each class
fname = output file
Output: None
"""
z_unique = np.unique(z)
fig = plt.figure()
ax = fig.add_subplot(111)
colors = iter(colors)
for k in z_unique:
idx = np.where(z==k)[0]
x = X[idx]
ax.hist(x, bins=bins, facecolor=next(colors),
histtype='stepfilled',
alpha=.8, normed=1, linewidth=0.5)
ax.set_xlabel(r'$x$')
if xlim:
ax.set_xlim(xlim)
plt.tick_params(top='off', bottom='on', left='off', right='off',
labelleft='off', labelbottom='on')
for i, spine in enumerate(plt.gca().spines.values()):
if i !=2:
spine.set_visible(False)
frame = plt.gca()
frame.axes.get_yaxis().set_visible(False)
fig.tight_layout()
fig.savefig(fname)
示例14: draw_filters
def draw_filters(W, cols=20, fig_size=(10, 10), filter_shape=(28, 28),
filter_standardization=False):
border = 2
num_filters = len(W)
rows = int(np.ceil(float(num_filters) / cols))
filter_height, filter_width = filter_shape
if filter_standardization:
W = preprocessing.scale(W, axis=1)
image_shape = (rows * filter_height + (border * rows),
cols * filter_width + (border * cols))
low, high = W.min(), W.max()
low = (3 * low + high) / 4
high = (low + 3 * high) / 4
all_filter_image = np.random.uniform(low=low, high=high,
size=image_shape)
all_filter_image = np.full(image_shape, W.min(), dtype=np.float32)
for i, w in enumerate(W):
start_row = (filter_height * (i / cols) +
(i / cols + 1) * border)
end_row = start_row + filter_height
start_col = (filter_width * (i % cols) +
(i % cols + 1) * border)
end_col = start_col + filter_width
all_filter_image[start_row:end_row, start_col:end_col] = \
w.reshape(filter_shape)
plt.figure(figsize=fig_size)
plt.imshow(all_filter_image, cmap=plt.cm.gray,
interpolation='none')
plt.tick_params(axis='both', labelbottom='off', labelleft='off')
plt.show()
示例15: plot_nice
def plot_nice(data, xlabel = 'Time (s)',ylabel='ylabel',title='Title',color='b', dims = 1, filename='nice',
size=(10,5), fontsize= 10,lw=2,marker='',xticks=[],yticks=[]):
fig = plt.figure()
ax = plt.gca()
fig.set_size_inches(size)
if dims == 1:
plt.plot(data,linewidth = lw, color =color ,marker=marker)
else:
plt.plot(data[0],data[1], linewidth = lw, color=color)
if not ARTISTIC_PLOT:
plt.xlabel(xlabel,fontsize=fontsize)
plt.ylabel(ylabel,fontsize=fontsize)
if SHOW_TITLE:
plt.title(title,fontsize=fontsize)
plt.tick_params(labelsize=fontsize)
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
plt.gcf().subplots_adjust(bottom=.4,left=.2)
if ARTISTIC_PLOT:
ax.spines['bottom'].set_color('none')
if len (xticks ) > 0 and not ARTISTIC_PLOT:
plt.xticks(xticks,xlabels)
#if len (yticks ) > 0:
plt.yticks(yticks)
if ARTISTIC_PLOT:
ax.spines['bottom'].set_color('none')
plt.xticks([])
if SAVE_PLOTS:
plt.savefig('results/' + filename+'.eps')
plt.savefig('results/' + filename+'.png')