当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.subplots_adjust函数代码示例

本文整理汇总了Python中matplotlib.pyplot.subplots_adjust函数的典型用法代码示例。如果您正苦于以下问题:Python subplots_adjust函数的具体用法?Python subplots_adjust怎么用?Python subplots_adjust使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了subplots_adjust函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: visualize_type

def visualize_type():
    # grab our parsed data
    data_file = parse.parse(MY_FILE,",")
    # make a new variable, 'counter', from iterating through each line
    # of data in the parsed data, and count how many incidents happen
    # by category
    counter = Counter(item["Category"]for item in data_file)
    # Set the labels which are based on the keys of our counter.
    # Since order doesn't matter, we can just used counter.keys()
    labels = tuple(counter.keys())
    # Set exactly where the labels hit the x-axis
    # numpy.arange() creates evenly spaced numbers
    xlocations = np.arange(len(labels)) + 0.5
    # Width of each bar that will be plotted
    width = 0.5
    # Assign data to a bar plot (similar to plt.plot()!)
    plt.bar(xlocations, counter.values(),width=width)
    # Assign labels and tick location to x-axis
    plt.xticks(xlocations + width /2, labels, rotation = 90)
    # Give some more room so the x-axis labels aren't cut off in the
    # graph
    plt.subplots_adjust(bottom=0.5)
    # Make the overall graph/figure is larger
    plt.rcParams['figure.figsize'] = 12,12
    # Save the graph!
    plt.savefig("Type.png")
    # Close plot figure
    plt.clf()
开发者ID:yanniey,项目名称:DataVisualization_Python,代码行数:28,代码来源:graph.py

示例2: plot_images

def plot_images(data_list, data_shape="auto", fig_shape="auto"):
    """
    plotting data on current plt object.
    In default,data_shape and fig_shape are auto.
    It means considered the data as a sqare structure.
    """
    n_data = len(data_list)
    if data_shape == "auto":
        sqr = int(n_data ** 0.5)
        if sqr * sqr != n_data:
            data_shape = (sqr + 1, sqr + 1)
        else:
            data_shape = (sqr, sqr)
    plt.figure(figsize=data_shape)

    for i, data in enumerate(data_list):
        plt.subplot(data_shape[0], data_shape[1], i + 1)
        plt.gray()
        if fig_shape == "auto":
            fig_size = int(len(data) ** 0.5)
            if fig_size ** 2 != len(data):
                fig_shape = (fig_size + 1, fig_size + 1)
            else:
                fig_shape = (fig_size, fig_size)
        Z = data.reshape(fig_shape[0], fig_shape[1])
        plt.imshow(Z, interpolation="nearest")
        plt.tick_params(labelleft="off", labelbottom="off")
        plt.tick_params(axis="both", which="both", left="off", bottom="off", right="off", top="off")
        plt.subplots_adjust(hspace=0.05)
        plt.subplots_adjust(wspace=0.05)
开发者ID:Nyker510,项目名称:Chainer,代码行数:30,代码来源:save_mnist_digit_fig.py

示例3: build_graph

    def build_graph(self):
        """ Update the plot area with loss values and cycle through to
        animate """
        self.ax1.set_xlabel('Iterations')
        self.ax1.set_ylabel('Loss')
        self.ax1.set_ylim(0.00, 0.01)
        self.ax1.set_xlim(0, 1)

        losslbls = [lbl.replace('_', ' ').title() for lbl in self.losskeys]
        for idx, linecol in enumerate(['blue', 'red']):
            self.losslines.extend(self.ax1.plot(0, 0,
                                                color=linecol,
                                                linewidth=1,
                                                label=losslbls[idx]))
        for idx, linecol in enumerate(['navy', 'firebrick']):
            lbl = losslbls[idx]
            lbl = 'Trend{}'.format(lbl[lbl.rfind(' '):])
            self.trndlines.extend(self.ax1.plot(0, 0,
                                                color=linecol,
                                                linewidth=2,
                                                label=lbl))

        self.ax1.legend(loc='upper right')

        plt.subplots_adjust(left=0.075, bottom=0.075, right=0.95, top=0.95,
                            wspace=0.2, hspace=0.2)

        plotcanvas = FigureCanvasTkAgg(self.fig, self.frame)
        plotcanvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True)
        ani = animation.FuncAnimation(self.fig, self.animate, interval=2000, blit=False)
        plotcanvas.draw()
开发者ID:huangjiancong1,项目名称:faceswap-huang,代码行数:31,代码来源:gui.py

示例4: make_lick_individual

def make_lick_individual(targetSN, w1, w2):
    """ Make maps for the kinematics. """
    filename = "lick_corr_sn{0}.tsv".format(targetSN)
    binimg = pf.getdata("voronoi_sn{0}_w{1}_{2}.fits".format(targetSN, w1, w2))
    intens = "collapsed_w{0}_{1}.fits".format(w1, w2)
    extent = calc_extent(intens)
    bins = np.loadtxt(filename, usecols=(0,), dtype=str).tolist()
    bins = np.array([x.split("bin")[1] for x in bins]).astype(int)
    data = np.loadtxt(filename, usecols=np.arange(25)+1).T
    labels = [r'Hd$_A$', r'Hd$_F$', r'CN$_1$', r'CN$_2$', r'Ca4227', r'G4300',
             r'Hg$_A$', r'Hg$_F$', r'Fe4383', r'Ca4455', r'Fe4531', r'C4668',
             r'H$_\beta$', r'Fe5015', r'Mg$_1$', r'Mg$_2$', r'Mg$_b$', r'Fe5270',
             r'Fe5335', r'Fe5406', r'Fe5709', r'Fe5782', r'Na$_D$', r'TiO$_1$',
             r'TiO$_2$']
    mag = "[mag]"
    ang = "[\AA]"
    units = [ang, ang, mag, mag, ang, ang,
             ang, ang, ang, ang, ang, ang,
             ang, ang, mag, mag, ang, ang,
             ang, ang, ang, ang, ang, mag,
             mag]
    lims = [[None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None]]
    pdf = PdfPages("figs/lick_sn{0}.pdf".format(targetSN))
    fig = plt.figure(1, figsize=(6.25,5))
    plt.subplots_adjust(bottom=0.12, right=0.97, left=0.09, top=0.96)
    plt.minorticks_on()
    ax = plt.subplot(111)
    ax.minorticks_on()
    plot_indices = np.arange(12,22)
    for i, vector in enumerate(data):
        if i not in plot_indices:
            continue
        print "Making plot for {0}...".format(labels[i])
        kmap = np.zeros_like(binimg)
        kmap[:] = np.nan
        for bin,v in zip(bins, vector):
            idx = np.where(binimg == bin)
            kmap[idx] = v
        vmin = lims[i][0] if lims[i][0] else np.median(vector) - 2 * vector.std()
        vmax = lims[i][1] if lims[i][1] else np.median(vector) + 2 * vector.std()
        m = plt.imshow(kmap, cmap="inferno", origin="bottom", vmin=vmin,
                   vmax=vmax, extent=extent, aspect="equal")
        make_contours()
        plt.minorticks_on()
        plt.xlabel("X [kpc]")
        plt.ylabel("Y [kpc]")
        plt.xlim(extent[0], extent[1])
        plt.ylim(extent[2], extent[3])
        cbar = plt.colorbar(m)
        cbar.set_label("{0} {1}".format(labels[i], units[i]))
        pdf.savefig()
        plt.clf()
    pdf.close()
    return
开发者ID:kadubarbosa,项目名称:hydramuse,代码行数:60,代码来源:maps.py

示例5: plot_flux

def plot_flux(f, q_left, q_right, plot_zero=True):
    qvals = np.linspace(q_right, q_left, 200)
    fvals = f(qvals)
    dfdq = np.diff(fvals) / (qvals[1]-qvals[0])  # approximate df/dq
    qmid = 0.5*(qvals[:-1] + qvals[1:])   # midpoints for plotting dfdq

    #plt.figure(figsize=(12,4))
    plt.subplot(131)
    plt.plot(qvals,fvals)
    plt.xlabel('q')
    plt.ylabel('f(q)')
    plt.title('flux function f(q)')

    plt.subplot(132)
    plt.plot(qmid, dfdq)
    plt.xlabel('q')
    plt.ylabel('df/dq')
    plt.title('characteristic speed df/dq')

    plt.subplot(133)
    plt.plot(dfdq, qmid)
    plt.xlabel('df/dq')
    plt.ylabel('q')
    plt.title('q vs. df/dq')
    if plot_zero:
        plt.plot([0,0],[qmid.min(), qmid.max()],'k--')

    plt.subplots_adjust(left=0.)
    plt.tight_layout()
开发者ID:maojrs,项目名称:riemann_book,代码行数:29,代码来源:nonconvex_demos.py

示例6: fit_and_plot

def fit_and_plot(cand, spd):
    data = cand.profile
    n = len(data)
    rms = np.std(data[(n/2):])
    xs = np.linspace(0.0, 1.0, n, endpoint=False)
    G = gauss._compute_data(cand)
    print "    Reduced chi-squared: %f" % (G.get_chisqr(data) / G.get_dof(n))
    print "    Baseline rms: %f" % rms
    print "    %s" % G.components[0]

    fig1 = plt.figure(figsize=(10,10))
    plt.subplots_adjust(wspace=0, hspace=0)

    # upper
    ax1 = plt.subplot2grid((3,1), (0,0), rowspan=2, colspan=1)
    ax1.plot(xs, data/rms, color="black", label="data")
    ax1.plot(xs, G.components[0].make_gaussian(n), color="red", label="best fit")

    # lower
    ax2 = plt.subplot2grid((3,1), (2,0), sharex=ax1)
    ax2.plot(xs, data/rms - G.components[0].make_gaussian(n), color="black", label="residuals")
    ax2.set_xlabel("Fraction of pulse window")

    plt.figure()
    plt.pcolormesh(xs, spd.waterfall_freq_axis(), spd.data_zerodm_dedisp, cmap=Greys)
    plt.xlabel("Fraction of pulse window")
    plt.ylabel("Frequency (MHz)")
    plt.xlim(0, 1)
    plt.ylim(spd.min_freq, spd.max_freq)

    plt.show()
开发者ID:pscholz,项目名称:Ratings2.0,代码行数:31,代码来源:test_sp_gaussian.py

示例7: test_twin_axes_empty_and_removed

def test_twin_axes_empty_and_removed():
    # Purely cosmetic font changes (avoid overlap)
    matplotlib.rcParams.update({"font.size": 8})
    matplotlib.rcParams.update({"xtick.labelsize": 8})
    matplotlib.rcParams.update({"ytick.labelsize": 8})
    generators = [ "twinx", "twiny", "twin" ]
    modifiers = [ "", "host invisible", "twin removed", "twin invisible",
        "twin removed\nhost invisible" ]
    # Unmodified host subplot at the beginning for reference
    h = host_subplot(len(modifiers)+1, len(generators), 2)
    h.text(0.5, 0.5, "host_subplot", horizontalalignment="center",
        verticalalignment="center")
    # Host subplots with various modifications (twin*, visibility) applied
    for i, (mod, gen) in enumerate(product(modifiers, generators),
        len(generators)+1):
        h = host_subplot(len(modifiers)+1, len(generators), i)
        t = getattr(h, gen)()
        if "twin invisible" in mod:
            t.axis[:].set_visible(False)
        if "twin removed" in mod:
            t.remove()
        if "host invisible" in mod:
            h.axis[:].set_visible(False)
        h.text(0.5, 0.5, gen + ("\n" + mod if mod else ""),
            horizontalalignment="center", verticalalignment="center")
    plt.subplots_adjust(wspace=0.5, hspace=1)
开发者ID:Acanthostega,项目名称:matplotlib,代码行数:26,代码来源:test_axes_grid1.py

示例8: dose_plot

def dose_plot(df,err,cols,scale='linear'):
    n_rows = int(np.ceil(len(cols)/3.0))
    plt.figure(figsize=(20,4 * n_rows))
    subs = gridspec.GridSpec(n_rows, 3) 
    plt.subplots_adjust(hspace=0.54,wspace=0.27)

    for col,sub in zip(cols,subs):
        plt.subplot(sub)
        for base in df['Base'].unique():
            for drug in get_drugs_with_multiple_doses(filter_rows(df,'Base',base)):
                data = thread_first(df,
                                    (filter_rows,'Drug',drug),
                                    (filter_rows,'Base',base),
                                    (DF.sort, 'Dose'))
                error = thread_first(err,
                                     (filter_rows,'Drug',drug),
                                     (filter_rows,'Base',base),
                                     (DF.sort, 'Dose'))
                if scale == 'linear':
                    plt.errorbar(data['Dose'],data[col],yerr=error[col])
                    title = "{} vs. Dose".format(col)
                else: 
                    plt.errorbar(data['Dose'],data[col],yerr=error[col])
                    plt.xscale('log')
                    title = "{} vs. Dose (Log Scale)".format(col)
                    plt.xticks(data['Dose'].values,data['Dose'].values)
                    plt.xlim(0.06,15)
                label('Dose ({})'.format(data.Unit.values[0]), col,title,fontsize = 15)

                plt.legend(df['Base'].unique(), loc = 0)
开发者ID:dela3499,项目名称:assay-explorer,代码行数:30,代码来源:view.py

示例9: begin

def begin():
	m = Measurement()
	sample_count = 0
	try:
		fifo = open("npipe","r")
		add_data = AddData()

		f1 = plt.figure(figsize=(15,8))
		
		[sp1, sp2, sp3, sp4, sp5] = [f1.add_subplot(231), f1.add_subplot(232), f1.add_subplot(233), f1.add_subplot(234), f1.add_subplot(235)]	
		h1, = sp1.plot([],[])
		h2, = sp2.plot([],[])
		h3, = sp3.plot([],[])
		h4, = sp4.plot([],[])
		plt.subplots_adjust(hspace = 0.3)
		plt.show(block=False)

		while True:
			if sample_count == 1024*5:
				estimate_tf(m,[h1,h2,h3,h4],f1,[sp1, sp2, sp3, sp4, sp5])
				sample_count = 0
				m = Measurement()
				add_data = AddData()
			sample = get_data(fifo)
			add_data(m,sample)	
			sample_count = sample_count + 1
	except KeyboardInterrupt:
		fifo.close()
		exit(0)
开发者ID:wilseypa,项目名称:eis,代码行数:29,代码来源:Processor.py

示例10: prepare_plot

def prepare_plot(data):
    # rearranging data into 4 arrays (just for clarity)
    dataX = list(data[:, 0])
    dataY = list(data[:, 1])
    dataZ = list(data[:, 2])
    dataC = list(data[:, 3])

    # creating colormap according to present data
    cm = plt.get_cmap('brg')
    cNorm = matplotlib.colors.Normalize(vmin=min(dataC), vmax=max(dataC))
    scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm)

    # plotting
    fig = plt.figure()
    fig.set_facecolor('black')
    ax = fig.add_subplot(111, projection='3d', axisbg='k')
    ax.axis('off')
    ax.w_xaxis.set_pane_color((0, 0, 0))
    ax.w_yaxis.set_pane_color((0, 0, 0))
    ax.w_zaxis.set_pane_color((0, 0, 0))
    ax.grid(False)
    ax.scatter(dataX, dataY, dataZ, c=scalarMap.to_rgba(dataC), edgecolors=scalarMap.to_rgba(dataC), marker='.', s=5)
    scalarMap.set_array(dataC)
    plt.subplots_adjust(left=0.0, right=1.0, bottom=0.0, top=1.0)
    return ax
开发者ID:cogtepsum,项目名称:3DBinaryData,代码行数:25,代码来源:visualisation.py

示例11: plotTestSet

    def plotTestSet(self):
        
        plt.figure(figsize=(12,6), facecolor='white')
        
        # Plot  test set currents 
        plt.subplot(3,1,1)
       
        for tr in self.testset_traces :         
            plt.plot(tr.getTime(), tr.I, 'gray')
        plt.ylabel("I (nA)")
        plt.title('Experiment ' + self.name + " - Test Set")
        # Plot  test set voltage        
        plt.subplot(3,1,2)
        for tr in self.testset_traces :          
            plt.plot(tr.getTime(), tr.V, 'black')
        plt.ylabel("Voltage (mV)")

        # Plot test set raster
        plt.subplot(3,1,3)
        
        cnt = 0
        for tr in self.testset_traces :
            cnt += 1      
            if tr.spks_flag :
                plt.plot(tr.getSpikeTimes(), cnt*np.ones(tr.getSpikeNb()), '|', color='black', ms=5, mew=2)
        
        plt.yticks([])
        plt.ylim([0, cnt+1])
        plt.xlabel("Time (ms)")
        
        plt.subplots_adjust(left=0.10, bottom=0.07, right=0.95, top=0.92, wspace=0.25, hspace=0.25)

        plt.show()
开发者ID:apdavison,项目名称:GIFFittingToolbox,代码行数:33,代码来源:Experiment.py

示例12: eval_mean_error_functions

def eval_mean_error_functions(act,ang,n_vec,toy_aa,timeseries,withplot=False):
    """ Calculates sqrt(mean(E)) and sqrt(mean(F)) """

    Err = np.zeros(6)
    NT = len(timeseries)
    size = len(ang[6:])/3
    UA = ua(toy_aa.T[3:].T,np.ones(3))
    fig,axis=None,None
    if(withplot):
        fig,axis=plt.subplots(3,2)
        plt.subplots_adjust(wspace=0.3)
    for K in range(3):
        ErrJ = np.array([(i[K]-act[K]-2.*np.sum(n_vec.T[K]*act[3:]*np.cos(np.dot(n_vec,i[3:]))))**2 for i in toy_aa])
        Err[K] = np.sum(ErrJ)
        ErrT = np.array(((ang[K]+timeseries*ang[K+3]-UA.T[K]-2.*np.array([np.sum(ang[6+K*size:6+(K+1)*size]*np.sin(np.sum(n_vec*i,axis=1))) for i in toy_aa.T[3:].T])))**2)
        Err[K+3] = np.sum(ErrT)
        if(withplot):
            axis[K][0].plot(ErrJ,'.')
            axis[K][0].set_ylabel(r'$E$'+str(K+1))
            axis[K][1].plot(ErrT,'.')
            axis[K][1].set_ylabel(r'$F$'+str(K+1))
    
    if(withplot):
        for i in range(3):
            axis[i][0].set_xlabel(r'$t$')
            axis[i][1].set_xlabel(r'$t$')
        plt.show()

    EJ = np.sqrt(Err[:3]/NT)
    ET = np.sqrt(Err[3:]/NT)

    return np.array([EJ,ET])
开发者ID:jlsanders,项目名称:genfunc,代码行数:32,代码来源:genfunc_3d.py

示例13: plot_tfidf_classfeats

def plot_tfidf_classfeats(dfs):
    fig = plt.figure(figsize=(12, 9), facecolor="w")
    for i, df in enumerate(dfs):

        ax = fig.add_subplot(len(dfs), 1, i+1)
        ax.spines["top"].set_visible(False)
        ax.spines["right"].set_visible(False)
        ax.set_frame_on(False)
        ax.get_xaxis().tick_bottom()
        ax.get_yaxis().tick_left()
        if i == len(dfs)-1:
            ax.set_xlabel("Feature name", labelpad=14, fontsize=14)
        ax.set_ylabel("Tf-Idf score", labelpad=16, fontsize=14)
        #if i == 0:
        ax.set_title("Mean Tf-Idf scores for label = " + str(df.label), fontsize=16)

        x = range(1, len(df)+1)
        ax.bar(x, df.tfidf, align='center', color='#3F5D7D')
        #ax.lines[0].set_visible(False)
        ax.set_xticks(x)
        ax.set_xlim([0,len(df)+1])
        xticks = ax.set_xticklabels(df.feature)
        #plt.ylim(0, len(df)+2)
        plt.setp(xticks, rotation='vertical') #, ha='right', va='top')
        plt.subplots_adjust(bottom=0.24, right=1, top=0.97, hspace=0.9)

    plt.show()
开发者ID:amitsingh2783,项目名称:kaggle,代码行数:27,代码来源:analyze.py

示例14: plot_rolling_auto_home

def plot_rolling_auto_home(df_attack=None,df_defence=None, window=5, nstd=1, 
                      detected_events_home=None,
                     detected_events_away=None, sky_events=None):
    
    sns.set_context("notebook", font_scale=1.8 ,rc={"lines.linewidth": 3.5, "figure.figsize":(18,12) })
    plt.subplots_adjust(bottom=0.85)
    mean = pd.rolling_mean(df_attack, center=True, window=window)
    std = pd.rolling_std(df_attack, center=True, window=window)
   
    detected_plot_extrema = df_attack.ix[argrelextrema(df_attack.values, np.greater)]

    df_filt_noise = df_attack[(df_attack > mean-std) & (df_attack < mean+std)]
    df_filt_noise = df_filt_noise.ix[detected_plot_extrema.index].dropna()

    df_filt_keep = df_attack[~((df_attack > mean-std) & (df_attack < mean+std))]
    df_filt_keep = df_filt_keep.ix[detected_plot_extrema.index].dropna()
    
    plt.plot(df_attack, color='#4CA64C', label='{} Attack'.format(all_matches[0]['home_team'].title()))
    plt.fill_between(df_attack.index, (mean-nstd*std), (mean+nstd*std), interpolate=False, alpha=0.4, color='#B2B2B2', label='$\mu + {} \\times \sigma$'.format(nstd))
    plt.scatter(df_filt_keep.index, df_filt_keep.values, marker='*', s=120, color='#000000', zorder=10, label='Selected maxima post-filtering')
    plt.scatter(df_filt_noise.index, df_filt_noise.values, marker='x', s=120, color='#000000', zorder=10, label='Unselected maxima post-filtering')
    
    df_defence.apply(lambda x: -1*x).plot(color='#000000', label='{} Defence'.format(all_matches[0]['home_team'].title()))
    
    if(len(detected_events_home) > 0):
        classifier_events_df_home= pd.DataFrame(detected_events_home)
        classifier_events_df_home[classifier_events_df_home.category == 'GOAL']
    if(len(detected_events_away) > 0):    
        classifier_events_df_away= pd.DataFrame(detected_events_away)
        classifier_events_df_away[classifier_events_df_away.category == 'GOAL']



    font0 = FontProperties(family='arial', weight='bold',style='italic', size=16)
    for i, row in classifier_events_df_home.iterrows():
        if row.category == 'OTHER':
            continue
        plt.text(row.event, df_attack.max(), "{} {} {}".format(all_matches[0]['home_team'].upper(), row.category, row.event), rotation='vertical', color='black', bbox=dict(facecolor='green', alpha=0.2))#, transform=transform)
    for i, row in classifier_events_df_away.iterrows():
        if row.category == 'OTHER':
            continue
        plt.text(row.event, (df_attack.max()), "{} {} {}".format(all_matches[0]['away_team'].upper(), row.category, row.event), rotation='vertical', color='black', bbox=dict(facecolor='red', alpha=0.2))
    
    high_peak_position = 0;
    if(df_attack.max() > df_defence.max()): high_peak_position = -(df_defence.max() * 2.0)
    else: high_peak_position = -(df_defence.max() * 1.25)
      
    # Functionality to include Sky Sports text commentary updates on plot for goal events.
#     for i, row in pd.DataFrame(sky_events).iterrows():
#         dedented_text = textwrap.dedent(row.text).strip()
#         plt.text(row.event, high_peak_position, "@SkySports {} AT {}:\n{}:\n{}".format(row.category, row.event.time(), row.title, textwrap.fill(dedented_text, width=40)), color='black', bbox=dict(facecolor='blue', alpha=0.2))
    
    plt.legend(loc=4)
    
    ax = plt.gca()
    label = ax.set_xlabel('time')
    plt.ylabel('Tweet frequency')
    plt.title('{} vs. {} (WK {}) - rolling averages window={} mins'.format(all_matches[0]['home_team'].title(), all_matches[0]['away_team'].title(), all_matches[0]['dbname'], window))
    plt.savefig('{}attack_{}_plain.pdf'.format(all_matches[0]['home_team'].upper(), all_matches[0]['away_team'].upper()))
    return detected_plot_extrema
开发者ID:RyanDRKane,项目名称:RK_FYP,代码行数:60,代码来源:SocialMediaAnalyticsSportsEvents_RyanKane_ProjectCode.py

示例15: plot_TP

def plot_TP():
    with open ('p_files/ROC_table_' + str(seg) + '_pc' + str(p) + '_k' + str(k) + '.p', 'rb') as f:
        ROC_table = pickle.load(f)
    with open ('p_files/species_stats.p', 'rb') as f:
        species_table = pickle.load(f)

    with open ('p_files/species.p', 'rb') as f:
        species_name = pickle.load(f)

    xes = []#[item['number'] for item in ROC_table.values()]
    yes = []#[item['fp'] for item in ROC_table.values()]
    label = []
    low_TP = []
    for specie in ROC_table:
        xes.append(species_table[specie])
        yes.append(ROC_table[specie]['tp_rate'])
        label.append(specie)
        if float(ROC_table[specie]['tp_rate']) < 0.3 and species_table[specie] > 100:
            #print(ROC_table[specie]['tp_rate'])
            low_TP.append((specie, ROC_table[specie]['tp']))

    fig, ax = plt.subplots()
    plt.subplots_adjust(bottom=0.1)
    ax.plot([0,max(xes)],[0.3,0.3], ls="--")
    ax.scatter(xes, yes, marker = '.')
    for i, txt in enumerate(label):
        if txt in interesting:
        #if float(yes[i]) < 0.3 and xes[i] > 100 :
            #print(txt)
            #ax.annotate(parser.get_specie_name('../data/train/', str(species_name[txt][0]) + '.xml'), (xes[i],yes[i]))
            ax.annotate(txt, (xes[i],yes[i]))
    plt.suptitle('False Positive', fontsize = 14)
#    ax.set_xlabel('Principal Components')
#    ax.set_ylabel('Percentage of Variance')
    plt.show()
开发者ID:HelenaBach,项目名称:bachelor,代码行数:35,代码来源:test_knn.py


注:本文中的matplotlib.pyplot.subplots_adjust函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。