本文整理汇总了Python中matplotlib.pyplot.subplot2grid函数的典型用法代码示例。如果您正苦于以下问题:Python subplot2grid函数的具体用法?Python subplot2grid怎么用?Python subplot2grid使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了subplot2grid函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run_div_test
def run_div_test(fld, exact, show=False, ignore_inexact=False):
t0 = time()
result_numexpr = viscid.div(fld, preferred="numexpr", only=True)
t1 = time()
logger.info("numexpr magnitude runtime: %g", t1 - t0)
result_diff = viscid.diff(result_numexpr, exact[1:-1, 1:-1, 1:-1])
if not ignore_inexact and not (result_diff.data < 5e-5).all():
logger.warn("numexpr result is far from the exact result")
logger.info("min/max(abs(numexpr - exact)): %g / %g",
np.min(result_diff.data), np.max(result_diff.data))
planes = ["y=0f", "z=0f"]
nrows = 2
ncols = len(planes)
ax = plt.subplot2grid((nrows, ncols), (0, 0))
ax.axis("equal")
for i, p in enumerate(planes):
plt.subplot2grid((nrows, ncols), (0, i), sharex=ax, sharey=ax)
mpl.plot(result_numexpr, p, show=False)
plt.subplot2grid((nrows, ncols), (1, i), sharex=ax, sharey=ax)
mpl.plot(result_diff, p, show=False)
if show:
mpl.mplshow()
示例2: fit_and_plot
def fit_and_plot(cand, spd):
data = cand.profile
n = len(data)
rms = np.std(data[(n/2):])
xs = np.linspace(0.0, 1.0, n, endpoint=False)
G = gauss._compute_data(cand)
print " Reduced chi-squared: %f" % (G.get_chisqr(data) / G.get_dof(n))
print " Baseline rms: %f" % rms
print " %s" % G.components[0]
fig1 = plt.figure(figsize=(10,10))
plt.subplots_adjust(wspace=0, hspace=0)
# upper
ax1 = plt.subplot2grid((3,1), (0,0), rowspan=2, colspan=1)
ax1.plot(xs, data/rms, color="black", label="data")
ax1.plot(xs, G.components[0].make_gaussian(n), color="red", label="best fit")
# lower
ax2 = plt.subplot2grid((3,1), (2,0), sharex=ax1)
ax2.plot(xs, data/rms - G.components[0].make_gaussian(n), color="black", label="residuals")
ax2.set_xlabel("Fraction of pulse window")
plt.figure()
plt.pcolormesh(xs, spd.waterfall_freq_axis(), spd.data_zerodm_dedisp, cmap=Greys)
plt.xlabel("Fraction of pulse window")
plt.ylabel("Frequency (MHz)")
plt.xlim(0, 1)
plt.ylim(spd.min_freq, spd.max_freq)
plt.show()
示例3: __init__
def __init__(self):
self.fps = 20
self.N = 10
self.L = 15
self.x=np.array([])
self.y=np.array([])
self.fig1 = plt.figure(figsize = (6,16))
self.ax1 = plt.subplot2grid((3,2),(1,0),colspan=2,rowspan=2)
self.ax1.set_xlim([0,self.L])
self.ax1.set_ylim([0,self.L])
self.ax1.set_xlabel('Simulation')
self.ax2 = plt.subplot2grid((3,2),(0,0),colspan=2)
self.ax2.set_xlim([0,10])
self.ax2.set_ylim([0,1.1])
self.ax2.set_xlabel('Time',labelpad=-15)
self.ax2.set_ylabel('$\phi$',fontsize=20)
self.line, = self.ax2.plot([],[])
#To do the animation
self.ani1 = animation.FuncAnimation(self.fig1,self.update_scatt,interval =self.fps ,init_func = self.setup_plot,blit=True)
示例4: createExamples
def createExamples() :
numbersWeHave = range (0, 1)
versionsWeHave = range(1, 5)
path = '/Users/ahmadbarakat/Downloads/CCEP Term 7/Pattern Recognition/ass1/ass1/data/'
arr = []
for eachNum in numbersWeHave:
for eachVer in versionsWeHave:
imgFilePath = path + str(eachNum) + '-' + str(eachVer) + '.jpg'
ei = Image.open(imgFilePath)
eiar = np.asarray(ei)
print str(eachNum) + '-' + str(eachVer)
eiar = threshold(eiar)
arr.append(eiar)
fog = plt.figure()
ax1 = plt.subplot2grid((2,2), (0,0))
ax2 = plt.subplot2grid((2,2), (0,1))
ax3 = plt.subplot2grid((2,2), (1,0))
ax4 = plt.subplot2grid((2,2), (1,1))
ax1.imshow(graphArr(arr[0]))
ax2.imshow(graphArr(arr[1]))
ax3.imshow(graphArr(arr[2]))
ax4.imshow(graphArr(arr[3]))
plt.show()
示例5: fempipeWidget
def fempipeWidget(alpha, pipedepth):
respEW, respNS, X, Y = fempipe(alpha, pipedepth)
fig = plt.figure(figsize = (8, 6))
ax0 = plt.subplot2grid((2,2), (0,0))
ax1 = plt.subplot2grid((2,2), (0,1))
ax2 = plt.subplot2grid((2,2), (1,0), colspan=2)
dat0 = ax0.imshow(respEW.real*100, extent=[X.min(),X.max(),Y.min(),Y.max()])
dat1 = ax1.imshow(respNS.real*100, extent=[X.min(),X.max(),Y.min(),Y.max()])
cb0 = plt.colorbar(dat0, ax = ax0)
cb1 = plt.colorbar(dat1, ax = ax1)
ax0.set_title("In-phase EW boom (%)", fontsize = 12)
ax1.set_title("In-phase NS boom (%)", fontsize = 12)
ax0.set_xlabel("Easting (m)", fontsize = 12)
ax1.set_xlabel("Easting (m)", fontsize = 12)
ax0.set_ylabel("Northing (m)", fontsize = 12)
ax1.set_ylabel("Northing (m)", fontsize = 12)
ax0.plot(np.r_[0., 0.], np.r_[-10., 10.], 'k--', lw=2)
ax1.plot(np.r_[0., 0.], np.r_[-10., 10.], 'k--', lw=2)
ax2.plot(Y[:,20],respEW[:, 20].real, 'k.-')
ax2.plot(Y[:,20],respEW[:, 20].imag, 'k--')
ax2.plot(Y[:,20],respNS[:, 20].real, 'r.-')
ax2.plot(Y[:,20],respNS[:, 20].imag, 'r--')
ax2.legend(('In-phase EW boom', 'Out-of-phase EW boom', 'In-phase NS boom', 'Out-of-phase NS boom'),loc=4)
ax2.grid(True)
ax2.set_ylabel('Hs/Hp (%)', fontsize = 16)
ax2.set_xlabel('Northing (m)', fontsize = 16)
ax2.set_title('Northing profile line at Easting 0 m', fontsize = 16)
plt.tight_layout()
plt.show()
示例6: _onclick_help
def _onclick_help(event, params):
"""Function for drawing help window"""
import matplotlib.pyplot as plt
text, text2 = _get_help_text(params)
width = 6
height = 5
fig_help = figure_nobar(figsize=(width, height), dpi=80)
fig_help.canvas.set_window_title('Help')
ax = plt.subplot2grid((8, 5), (0, 0), colspan=5)
ax.set_title('Keyboard shortcuts')
plt.axis('off')
ax1 = plt.subplot2grid((8, 5), (1, 0), rowspan=7, colspan=2)
ax1.set_yticklabels(list())
plt.text(0.99, 1, text, fontname='STIXGeneral', va='top', weight='bold',
ha='right')
plt.axis('off')
ax2 = plt.subplot2grid((8, 5), (1, 2), rowspan=7, colspan=3)
ax2.set_yticklabels(list())
plt.text(0, 1, text2, fontname='STIXGeneral', va='top')
plt.axis('off')
tight_layout(fig=fig_help)
# this should work for non-test cases
try:
fig_help.canvas.draw()
fig_help.show(warn=False)
except Exception:
pass
示例7: plot_scaling
def plot_scaling():
X, y = make_blobs(n_samples=50, centers=2, random_state=4, cluster_std=1)
X += 3
plt.figure(figsize=(15, 8))
main_ax = plt.subplot2grid((2, 4), (0, 0), rowspan=2, colspan=2)
main_ax.scatter(X[:, 0], X[:, 1], c=y, cmap=cm2, s=60)
maxx = np.abs(X[:, 0]).max()
maxy = np.abs(X[:, 1]).max()
main_ax.set_xlim(-maxx + 1, maxx + 1)
main_ax.set_ylim(-maxy + 1, maxy + 1)
main_ax.set_title("Original Data")
other_axes = [plt.subplot2grid((2, 4), (i, j)) for j in range(2, 4) for i in range(2)]
for ax, scaler in zip(other_axes, [StandardScaler(), RobustScaler(),
MinMaxScaler(), Normalizer(norm='l2')]):
X_ = scaler.fit_transform(X)
ax.scatter(X_[:, 0], X_[:, 1], c=y, cmap=cm2, s=60)
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
ax.set_title(type(scaler).__name__)
other_axes.append(main_ax)
for ax in other_axes:
ax.spines['left'].set_position('center')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_position('center')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
示例8: visualize_tss
def visualize_tss(flare_class, prediction_threshold, flare_threshold,tss):
hits_x = []
hits_y = []
miss_x = []
miss_y = []
for x,y in plot_xy:
if (x>=prediction_threshold) == (y>=flare_threshold):
hits_x.append(x)
hits_y.append(y)
else:
miss_x.append(x)
miss_y.append(y)
plt.rcParams['figure.figsize'] = (12.8,9.6)
plt.subplot2grid((1,1),(0,0), colspan=1, rowspan=1)
plt.plot(miss_x, miss_y, 'mo',markersize=1.0, markeredgecolor='r')
plt.plot(hits_x, hits_y, 'mo',markersize=1.0, markeredgecolor='b')
plt.gca().set_xscale('log')
plt.gca().set_yscale('log')
plt.gca().set_xlabel("AIA 193nm thresholded sum ({})".format(threshold_value))
plt.gca().set_ylabel("GOES 1-8A 24hour future max")
filename = "Flarepredict-{}-{}.png".format(flare_class, threshold_value)
plt.title("{}-class flare prediction with TI({}) : TSS = {}".format(flare_class, threshold_value, tss))
plt.savefig(filename, dpi=100)
plt.close("all")
示例9: plot_calibration_curve
def plot_calibration_curve(est, name, fig_index):
"""Plot calibration curve for est w/o and with calibration. """
# Calibrated with isotonic calibration
isotonic = CalibratedClassifierCV(est, cv=2, method='isotonic')
# Calibrated with sigmoid calibration
sigmoid = CalibratedClassifierCV(est, cv=2, method='sigmoid')
# Calibrated with ROC convex hull calibration
rocch = CalibratedClassifierCV(est, cv=2, method='rocch')
# Logistic regression with no calibration as baseline
lr = LogisticRegression(C=1., solver='lbfgs')
fig = plt.figure(fig_index, figsize=(10, 10))
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))
ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
for clf, name in [(lr, 'Logistic'),
(est, name),
(isotonic, name + ' + Isotonic'),
(sigmoid, name + ' + Sigmoid'),
(rocch, name + ' + ROCConvexHull')]:
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
if hasattr(clf, "predict_proba"):
prob_pos = clf.predict_proba(X_test)[:, 1]
else: # use decision function
prob_pos = clf.decision_function(X_test)
prob_pos = \
(prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max())
print("%s:" % name)
print("\tBrier: %1.4f" % (clf_score))
print("\tPrecision: %1.3f" % precision_score(y_test, y_pred))
print("\tRecall: %1.3f" % recall_score(y_test, y_pred))
print("\tF1: %1.3f" % f1_score(y_test, y_pred))
print("\tAuc: %1.4f\n" % roc_auc_score(y_test, prob_pos))
fraction_of_positives, mean_predicted_value = \
calibration_curve(y_test, prob_pos, n_bins=10)
ax1.plot(mean_predicted_value, fraction_of_positives, "s-",
label="%s (%1.4f)" % (name, clf_score))
ax2.hist(prob_pos, range=(0, 1), bins=10, label=name,
histtype="step", lw=2)
ax1.set_ylabel("Fraction of positives")
ax1.set_ylim([-0.05, 1.05])
ax1.legend(loc="lower right")
ax1.set_title('Calibration plots (reliability curve)')
ax2.set_xlabel("Mean predicted value")
ax2.set_ylabel("Count")
ax2.legend(loc="upper center", ncol=2)
plt.tight_layout()
示例10: plot
def plot(self, weights=True, assets=True, portfolio_label='PORTFOLIO', **kwargs):
""" Plot equity of all assets plus our strategy.
:param weights: Plot weights as a subplot.
:param assets: Plot asset prices.
:return: List of axes.
"""
res = ListResult([self], [portfolio_label])
if not weights:
ax1 = res.plot(assets=assets, **kwargs)
return [ax1]
else:
plt.figure(1)
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
res.plot(assets=assets, ax=ax1, **kwargs)
ax2 = plt.subplot2grid((3, 1), (2, 0), sharex=ax1)
# plot weights as lines
if self.B.values.min() < -0.01:
self.B.plot(ax=ax2, ylim=(min(0., self.B.values.min()), max(1., self.B.sum(1).max())),
legend=False, colormap=plt.get_cmap('jet'))
else:
# fix rounding errors near zero
if self.B.values.min() < 0:
B = self.B - self.B.values.min()
else:
B = self.B
B.plot(ax=ax2, ylim=(0., max(1., B.sum(1).max())),
legend=False, colormap=plt.get_cmap('jet'), kind='area', stacked=True)
plt.ylabel('weights')
return [ax1, ax2]
示例11: calibration_plot
def calibration_plot(clf, xtest, ytest):
prob = clf.predict_proba(xtest)[:, 1]
outcome = ytest
data = pd.DataFrame(dict(prob=prob, outcome=outcome))
# group outcomes into bins of similar probability
bins = np.linspace(0, 1, 20)
cuts = pd.cut(prob, bins)
binwidth = bins[1] - bins[0]
# freshness ratio and number of examples in each bin
cal = data.groupby(cuts).outcome.agg(['mean', 'count'])
cal['pmid'] = (bins[:-1] + bins[1:]) / 2
cal['sig'] = np.sqrt(cal.pmid * ( 1- cal.pmid) / cal['count'])
# the calibration plot
ax = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
p = plt.errorbar(cal.pmid, cal['mean'], cal['sig'])
plt.plot(cal.pmid, cal.pmid, linestyle='--', lw=l, color='k')
plt.ylabel("Empirical P(Fresh)")
remove_border(ax)
# the distirubtion of P(fresh)
ax = plt.subplot2grid((3, 1), (2, 0), sharex=ax)
plt.bar(left=cal.pmid - binwidth / 2, height=cal['count'],
width=.95 * (bins[1] - bins[0]),
fc=p[0].get_color())
plt.xlabel("Predicted P(Fresh)")
remove_border()
plt.ylabel("Number")
示例12: main
def main():
print "loading data.."
# Open hdf5 file
df = pd.read_csv('train.shuffled', nrows = 100);
df = df.dropna();
# specifies the parameters of our graphs
fig = plt.figure(figsize=(18,6));
alpha=alpha_scatterplot = 0.2
alpha_bar_chart = 0.55
# lets us plot many diffrent shaped graphs together
ax1 = plt.subplot2grid((2,3),(0,0))
# plots a bar graph of those who surived vs those who did not.
df.click.value_counts().plot(kind='bar', alpha=alpha_bar_chart)
ax1.set_xlim(-1, 2)
# puts a title on our graph
plt.title("Distribution of click, (1 = clicked)")
plt.subplot2grid((2,3),(0,1))
plt.scatter(df.click, df.banner_pos, alpha=alpha_scatterplot)
# sets the y axis lable
plt.ylabel("banner pos")
# formats the grid line style of our graphs
plt.grid(b=True, which='major', axis='y')
plt.title("Survial by banner pos, (1 = clicked)")
df["date_time"] = df['hour'].apply(string_to_date);
dfts = df.set_index("date_time");
time_mean =dfts.groupby(lambda x: x.time()).mean();
print "saving data to hdf5"
print time_mean
test = pd.read_csv('test');
示例13: paint_clustering
def paint_clustering(results, clusters, num, chrom, tad_names):
dendros = []
axes = []
prev = 0
xlim = [-100, 100]
tmp = []
for i, result in enumerate(results):
if axes:
axes[-1].set_xticklabels([], visible=False)
clust = linkage(result, method='ward')
tmp = dendrogram(clust, orientation='right', no_plot=True)['leaves']
dendros += reversed(list([clusters[i][n] for n in tmp]))
axes.append(plt.subplot2grid((num, 9),(prev, 0), rowspan=len(result),
colspan=4))
dendrogram(clust, orientation='right',
labels=[tad_names[c] for c in clusters[i]])
if xlim[0] < axes[-1].get_xlim()[0]:
xlim[0] = axes[-1].get_xlim()[0]
if xlim[1] > axes[-1].get_xlim()[1]:
xlim[1] = axes[-1].get_xlim()[1]
prev += len(result)
for ax in axes:
ax.set_xlim(left=xlim[0], right=xlim[1])
axes = []
for i, j in enumerate(dendros):
axes.append(plt.subplot2grid((num, 9),(i, 4)))#gs1[i]))
chrom.visualize('exp1',
tad=chrom.get_experiment('exp1').tads[tad_names[j]],
axe=axes[-1], show=False)
axes[-1].set_axis_off()
ax4 = plt.subplot2grid((num, 9),(0, 5), rowspan=num, colspan=4)
chrom.visualize('exp1', paint_tads=True, axe=ax4)
plt.draw()
示例14: plot_reg_hist
def plot_reg_hist(datafile):
AVE_A = 0.42128425
STD_A = 0.28714299
AVE_Z = 0.09973424
STD_Z = 0.05802179
ID, real, res = ReadData(datafile)
uAn = res[:, 0]
rAn = real[:, 0]
uZn = res[:, 1]
rZn = real[:, 1]
dAn = uAn - rAn
dZn = uZn - rZn
uA = 3.0 * STD_A * uAn + AVE_A
uZ = 3.0 * STD_Z * uZn + AVE_Z
rA = 3.0 * STD_A * rAn + AVE_A
rZ = 3.0 * STD_Z * rZn + AVE_Z
dA = uA - rA
dZ = uZ - rZ
fig = plt.figure(figsize=(17,8))
ax1 = plt.subplot2grid((1,2), (0,0))
ax2 = plt.subplot2grid((1,2), (0,1))
ax1.set_title('Extinction SD Hist')
ax1.hist(dA)
ax2.set_title('Redshift SD Hist')
ax2.hist(dZ)
示例15: overlap_plot
def overlap_plot(profile_A, profile_B, w, y_slice):
"""Make nice overlap plots.
"""
import matplotlib.pyplot as plt
plt.figure()
plt.subplots_adjust(hspace=0.001)
norm_product_AB = profile_A * profile_B
ax1 = plt.subplot2grid((4, 1), (0, 0), rowspan=3)
ax1.plot(profile_A, label='Source A', linewidth=4, color='b')
ax1.plot(profile_B, label='Source B', linewidth=4, color='g')
ax1.tick_params(axis='both', which='major', labelsize=16)
plt.yticks(np.arange(0, 1.2, 0.2))
plt.legend()
ax2 = plt.subplot2grid((4, 1), (3, 0), rowspan=1)
ax2.plot(norm_product_AB, label='Product', linewidth=4, color='r')
plt.yticks(np.arange(0, 0.5, 0.25))
plt.ylim(0, 0.5)
ax2.tick_params(axis='both', which='major', labelsize=16)
pos = np.linspace(0, profile_A.size, 11)
y_labels, x_labels = w.wcs_pix2world(pos, np.ones_like(pos) * y_slice, 0)
plt.xticks(pos, x_labels)
plt.setp(ax1.get_xticklabels(), visible=False)
plt.legend()