当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.step函数代码示例

本文整理汇总了Python中matplotlib.pyplot.step函数的典型用法代码示例。如果您正苦于以下问题:Python step函数的具体用法?Python step怎么用?Python step使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了step函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: PlotStep

 def PlotStep(self, Primal,Primal0,col,dt = 0.2):
     
     Nshooting = self.Nshooting
     Nturbine = self.Nturbine
     
     time = {'States': [dt*k for k in range(Nshooting+1)],
             'Inputs': [dt*k for k in range(Nshooting)]}
 
     Nsubp = np.ceil(np.sqrt(Nturbine))
     key_dic = {'States': ['Og','beta'], 'Inputs': ['Tg']}
     counter = 0
     for type_ in key_dic.keys():
         for key in key_dic[type_]:
             for k in range(Nturbine):
                 Primal_struc  = self._TurbineV(Primal['Turbine'][k])
                 Primal0_struc = self._TurbineV(Primal0['Turbine'][k])
                 diff   = veccat(Primal_struc[type_,:,key])-veccat(Primal0_struc[type_,:,key])
            
                 plt.figure(10+counter)
                 plt.subplot(Nsubp,Nsubp,k)
                 plt.hold('on')
                 if (type_ == 'States'):
                     plt.plot(time[type_],diff,color=col)
                 else:
                     plt.step(time[type_],diff,color=col)    
         
             plt.title('Step'+key)   
             counter += 1
开发者ID:belkhir-nacim,项目名称:DistWindFarm,代码行数:28,代码来源:DistWTGCPLEX.py

示例2: mask_spectrum

def mask_spectrum(flux_to_fit,interactive=True,mask_lower_limit=None,mask_upper_limit=None):

    """
    Interactively and iteratively creates a Boolean mask for a spectrum.

    """
    if interactive:
      plt.ion()
      continue_parameter = 'no'
      mask_switch = 'yes'
      while mask_switch == 'yes':
        pixel_array = np.arange(len(flux_to_fit))
        plt.figure()
        plt.step(pixel_array,flux_to_fit)
        mask_lower_limit_string = raw_input("Enter mask lower limit (in pixels): ")
        mask_lower_limit = float(mask_lower_limit_string)
        mask_upper_limit_string = raw_input("Enter mask upper limit (in pixels): ")
        mask_upper_limit = float(mask_upper_limit_string)
        mask = (pixel_array >= mask_lower_limit) & (pixel_array <= mask_upper_limit)
        flux_to_fit_masked = np.ma.masked_where(mask,flux_to_fit)
        plt.step(pixel_array,flux_to_fit_masked)
        continue_parameter = raw_input("Happy? (yes or no]): ")
        plt.close()

        if continue_parameter == 'yes':
          mask_switch = 'no'

    else:
      pixel_array = np.arange(len(flux_to_fit))
      mask = (pixel_array >= mask_lower_limit) & (pixel_array <= mask_upper_limit)

    return mask
开发者ID:ernewton,项目名称:lyapy,代码行数:32,代码来源:lyapy.py

示例3: plotSegments

def plotSegments(jason, name="", labels=False):
    # read delimeters for each stop
    delims = readDelims()

    stopAdds = [getStopSet(jason["packets"], stop) for stop in delims]
    intersectBins = [set() for stop in delims]
    combobs = combinations(range(len(delims)), 2)
    for combob in combobs:
        curSect = stopAdds[combob[0]].intersection(stopAdds[combob[1]])
        for i in range(combob[0], combob[1]):
            intersectBins[i+1].update(curSect)
    probably_junk = stopAdds[0].intersection(stopAdds[-1])

    y = [len(bin - probably_junk) + 2 for bin in intersectBins]
    y[0] = y[1]  # For labelling purposes

    x = [stop['start'] for stop in delims]
    realy = [stop['actual'] for stop in delims]
    plot.xlabel('Seconds since '+jason["initial_time"])
    plot.ylabel('Number of bus occupants (predicted)')
    plot.xlim(0, delims[-1]['end'])
    plot.title(name)
    plot.step(x, y)
    plot.step(x, realy, color="purple", where="post")

    if(labels):
        for stop in delims:
            annotate(stop["code"], stop["start"], stop["actual"], 10, 10)

    makeWidePlot("bus", "segments")

    plot.show()
开发者ID:revan,项目名称:BusOccupancy,代码行数:32,代码来源:segments.py

示例4: draw_eta_profile

def draw_eta_profile(analyzed_root_files, # path to edm-analyzed root files
                    gen_energy, # energy with which particle is generated
                    mylabel = "", # label for histograms
                    histcolor = '#000000'):
    
######################################################################################
# Function reads in the root files with edm-analyzed data,                           #
# chains the data from the different files to one root tree,                         #
# reads the relevant data to arrays                                                  #
# and creates and draws histograms.                                                  #
# Drawing of errobars is done here.                                                  #
# Settings for decorations such as axeslabels are not done here, but in main program #
######################################################################################
    t0 = time.time()
    ## add to tree all edm-analyzed reco files
    rh_tree = ROOT.TChain("demo/rh_tree")
    rh_tree.Add(analyzed_root_files)
    print "=========================================================="
    print "Events in",str(analyzed_root_files),": ", rh_tree.GetEntries()
    
    ## initialize arrays
    particle_etas = [] # list with all eta values in cut intervall
    eta_energies = [] # list with all corresponding total RecHit energies for each eta over all events
    
    ## loop over all gen_particles
    for i in range(rh_tree.GetEntries()):
        rh_tree.GetEntry(i)
        momentum_vector = ROOT.TVector3(rh_tree.gen_part_momentum_x,
                                        rh_tree.gen_part_momentum_y,
                                        rh_tree.gen_part_momentum_z)
        eta = momentum_vector.Eta()
        ## do eta cut

        if ((eta > min_eta) and (eta < max_eta)):
            # and ((rh_tree.ecal_total_energy+rh_tree.hcal_total_energy) < 40.)):
            particle_etas.append(eta)
            eta_energies.append(rh_tree.ecal_total_energy
                                + rh_tree.hcal_total_energy)

    particle_etas = np.array(particle_etas,dtype=float)
    eta_energies = np.array(eta_energies,dtype=float)
    cut_event_numb = particle_etas.size
    

    print "time needed to read in data and loop over entries: ", np.round(time.time()-t0,2)
    ## draw histogram
    # etas are histogrammed automatically, corresponding energies are used as weights

    binvalues, binedges, binerrors = calc_histogram(cut_event_numb,
                                                    particle_etas,
                                                    eta_energies/float(gen_energy))
    t1 = time.time()
    plt.step(binedges, np.append(binvalues, binvalues[-1]),
             where="post", color=histcolor,
             label=str(mylabel))
    plt.errorbar(np.array(binedges[:-1])+(binedges[1]-binedges[0])/2, binvalues,
                yerr=binerrors,
                fmt='none', ecolor=histcolor)
    print "time needed to draw plot: ", np.round(time.time()-t1,2)
    return binvalues, binerrors, binedges
开发者ID:elimik31,项目名称:castor_bachelor_michael,代码行数:60,代码来源:eta_profile.py

示例5: testExponManyEvents

    def testExponManyEvents(self):
        """
        generate and fit an exponential distribution with lifetime of 25
        make a plot in testExponManyEvents.png
        """
        tau = 25.0
        nBins = 400
        size = 100
        taulist = []
        for i in range(1000):
            x = range(nBins)
            timeHgValues = np.zeros(nBins, dtype=np.int64)
            timeStamps = expon.rvs(loc=0, scale=tau, size=size)
            ts64 = timeStamps.astype(np.uint64)
            tsBinner.tsBinner(ts64, timeHgValues)
            
            param = expon.fit(timeStamps)
            fit = expon.pdf(x,loc=param[0],scale=param[1])
            fit *= size
            print "i=",i," param[1]=",param[1]
            taulist.append(param[1]) 

        hist,bins = np.histogram(taulist, bins=20, range=(15,25))
        width = 0.7*(bins[1]-bins[0])
        center = (bins[:-1]+bins[1:])/2
        plt.step(center, hist, where = 'post')
        plt.savefig(inspect.stack()[0][3]+".png")
开发者ID:bmazin,项目名称:ARCONS-pipeline,代码行数:27,代码来源:TestExpon.py

示例6: values_fromCDF

def values_fromCDF():
    '''Calculate an empirical cumulative distribution function, compare it with the exact one, and
    find the exact point for a specific data value.'''
    
    # Generate normally distributed random data
    myMean = 5
    mySD = 2
    numData = 100
    data = stats.norm.rvs(myMean, mySD, size=numData)
    
    # Calculate the cumulative distribution function, CDF
    numbins = 20
    counts, bin_edges = np.histogram(data, bins=numbins, normed=True)
    cdf = np.cumsum(counts)
    cdf /= np.max(cdf)
    
    # compare with the exact CDF
    plt.step(bin_edges[1:],cdf)
    plt.hold(True)
    plt.plot(x, stats.norm.cdf(x, myMean, mySD),'r')
    
    # Find out the value corresponding to the x-th percentile: the
    # "cumulative distribution function"
    value = 2
    myMean = 5
    mySD = 2
    cdf = stats.norm.cdf(value, myMean, mySD)
    print(('With a threshold of {0:4.2f}, you get {1}% of the data'.format(value, round(cdf*100))))
    
    # For the percentile corresponding to a certain value: 
    # the "inverse cumulative distribution function" 
    value = 0.025
    icdf = stats.norm.isf(value, myMean, mySD)
    print(('To get {0}% of the data, you need a threshold of {1:4.2f}.'.format((1-value)*100, icdf)))
    plt.show()
开发者ID:CeasarSS,项目名称:books,代码行数:35,代码来源:figs_DistributionNormal.py

示例7: main

def main():
    '''The data in this example give the life talbe for motion sickness data
    from an experiment with vertical movement at a frequency of 0.167 Hz and
    acceleration 0.111 g, and of a second experiment with 0.333 Hz and acceleration
    of 0.222 g.
    '''
    
    # get the data
    data1 = getData('altman_13_2.txt', subDir='..\Data\data_altman')
    data2 = getData('altman_13_3.txt', subDir='..\Data\data_altman')
    
    # Determine the Kaplan-Meier curves
    (p1, r1, t1, sp1,se1) = kaplanmeier(data1)
    (p2, r2, t2, sp2,se2) = kaplanmeier(data2)
    
    # Make a combined plot for both datasets
    plt.step(t1,sp1, where='post')
    plt.hold(True)
    plt.step(t2,sp2,'r', where='post')
    
    plt.legend(['Data1', 'Data2'])
    plt.ylim(0,1)
    plt.xlabel('Time')
    plt.ylabel('Survival Probability')
    plt.show()
    
    # Check the hypothesis that the two survival curves are the same
    # --- >>> START stats <<< ---
    (p, X2) = logrank(data1, data2)
    # --- >>> STOP stats <<< ---
    
    return p    # supposed to be 0.073326322306832212
开发者ID:fluxium,项目名称:statsintro,代码行数:32,代码来源:survival.py

示例8: fvc_plot_setup

def fvc_plot_setup(hist_data, hist, binEdges, xlabel, title = ""):
    '''
    Plot the histogram, with removed observations highlighted
    
    :param array hist_data: raw values which have been binned to create hist
    :param array hist: values of histogram
    :param array binEdges: location of LH bin edge
    :param str xlabel: label for x-axis
    :param str title: title of plot
    
    :returns:
        plot-hist - useful histogram data to plot in log-scale
        bincenters - locations of centres of bins
    '''
    import matplotlib.pyplot as plt

    plot_hist = np.array([float(x) if x != 0 else 1e-1 for x in hist])
    plt.clf()
    bincenters = 0.5 * (binEdges[1:] + binEdges[:-1])
    plt.step(bincenters, plot_hist, 'b-', label = 'observations', where='mid')
            
    fit = utils.fit_gaussian(bincenters, hist, max(hist), mu = np.mean(hist_data), sig = np.std(hist_data))
    plot_gaussian = utils.gaussian(bincenters, fit)
    plt.plot(bincenters, plot_gaussian, 'r-', label = 'Gaussian fit')
    # sort labels and prettify
    plt.xlabel(xlabel)                    
    plt.ylabel("Frequency")
    plt.gca().set_yscale('log')
    plt.ylim([0.1,10000])
    plt.title(title)

    return plot_hist, bincenters # fvc_plot_setup
开发者ID:rjhd2,项目名称:HadISD_v2,代码行数:32,代码来源:frequent_values.py

示例9: dopsd

def dopsd(nfft = None, rpt = 10, plotdB=True):
  """
  Takes a snapshot, then computes, plots and writes out the Power Spectral
  Density functions.  The psd function is written into a file named "psd".
  This file will be overwritten with each call.  Arguments:

  nfft The number of points in the psd function.  Defaults to the number of
       points in a snapshot, the maximum which should be used.

  rpt  The numper of mesurements to be averaged for the plot and output file. 
       Defaults to 10.

  plotdB controls whether the plot is linear in power or in dB
  """
  if nfft == None:
    nfft = numpoints
  for i in range(rpt):
    power, freqs = adc5g.get_psd(roach2, snap_name, samp_freq*1e6, 8, nfft)
    if i == 0:
      sp = power
    else:
      sp += power
  sp /= rpt
  if plotdB:
    plt.step(freqs, 10*np.log10(sp))
  else:
    plt.step(freqs, (sp))
  plt.show(block = False)
  data = np.column_stack((freqs/1e6, 10*np.log10(sp)))
  np.savetxt("psd", data, fmt=('%7.2f', '%6.1f'))
开发者ID:amitbansod,项目名称:adc_tests,代码行数:30,代码来源:rww_tools.py

示例10: plot_pdf

def plot_pdf(n):
	w = 0.5
	r = 0.9
	X = np.random.uniform(0,1,n)
	Y = map(lambda x: w*x + (1-w)*r, X)
	# CDF estimate of X
	plt.figure()
	ecdf_x = sm.tools.ECDF(X)
	x = np.linspace(min(X), max(X))
	f_x = ecdf_x(x)
	plt.step(x, f_x)
	plt.xlabel(r"$x$")
	plt.ylabel(r"Empirical CDF of $X \sim U(0,1)$")
	plt.grid()
	# PDF estimate of Y
	plt.figure()
	count, bins, patches = plt.hist(Y, n/200, normed=1)
	# CDF estimate of Y
	plt.figure()
	ecdf_y = sm.tools.ECDF(Y)
	y = np.linspace(min(Y), max(Y))
	f_y = ecdf_y(y)
	plt.step(y, f_y)
	plt.xlabel(r"$y$")
	plt.ylabel(r"Empirical CDF of $Y=w\cdot X + (1-w)\cdot r$")
	plt.grid()
开发者ID:kubkon,项目名称:Phd-python,代码行数:26,代码来源:function_random_variable.py

示例11: pltLumFun

def pltLumFun(data,lumbins,color='blue',linestyle='-',redshift=1,overplot=False,plotdata=True,label=None,linewidth=2):
	zz, = np.where(z==redshift)
	plt.step(lumbins,np.log10(np.append(data[zz,:],data[zz,-1])),color=color,linestyle=linestyle,label=label,lw=linewidth)
	if plotdata==True:
		obs = readcol.readcol('/nobackupp8/mtremmel/DATA/QSOdata/bol_lf_point_dump.dat',twod=False,asdict=True,skipline=38)
                obs2 = readcol.readcol('/nobackupp8/mtremmel/DATA/QSOdata/M1450z5_McGreer13.dat',twod=False,asdict=True,skipline=1)
		tt, = np.where(obs['redshift']==redshift)
		plt.errorbar(obs['lbol'][tt] + loglbol_sun, obs['dphi'][tt],yerr=obs['sig'][tt],fmt='o',color='grey',ecolor='grey',label='Hopkins+ 2007 (Compilation)')
		if z[zz] == 6:
			plt.errorbar([logLbol6B],[logphi6B],xerr=errlogLbol6B,yerr=errlogphi6B,fmt='^',color='k',label='Barger+2003')
	                plt.errorbar([logLbol6F],[logphi6F],xerr=[[logLbol6Fm],[logLbol6Fp]],yerr=[[errlogphi6Fm],[errlogphi6Fp]],fmt='s',color='k',label='Fiore+ 2012')
		if z[zz] == 5:
			l1450 = np.log10(4.4)+mcABconv(obs2['M1450'],c/(0.145e-4))
	                dphi = 10**obs2['logphi']
	                dphip = (2./5.) * (dphi+obs2['sig'])
	                dphim = (2./5.) * (dphi - obs2['sig'])
	                dphi = np.log10((2./5.)*dphi)
	                dphierr = [dphi-np.log10(dphim),np.log10(dphip)-dphi]
	                plt.errorbar(l1450,dphi,yerr=dphierr,fmt='D',color='k',label='McGreer+ 2013')
	if overplot==False:
		plt.title(str(zbinsl[zz[0]])+' < z < '+str(zbinsh[zz[0]]))
     		plt.xlabel(r'log$_{10}$($L_{bol}$ [ergs/s]))',fontsize=30)
     		plt.ylabel(r'log$_{10}$($\phi$ [Mpc$^{-3}$ dex$^{-1}$])',fontsize=30)
        plt.legend(loc='lower left',fontsize=20)
	return
开发者ID:mtremmel,项目名称:SimAnalysis,代码行数:25,代码来源:bhlumfun.py

示例12: run

  def run(self):
    dataset = [[float(entry) for entry in data]
               for data in self._get_stripped_file_lines()]
    if not data:
      return None

    # Plot aesthetics.
    fig = plt.figure(1)
    plt.title('%s' % FLAGS.title)
    xlabel = FLAGS.xlabel
    if FLAGS.xlog:
      xlabel = 'log( ' + xlabel + ' )'
    plt.xlabel(xlabel)
    plt.ylabel(FLAGS.ylabel)

    data_plts = []
    for i, data in enumerate(dataset):
      ecdf = distributions.ECDF(data)
      if FLAGS.xmax:
        x = np.linspace(0, float(FLAGS.xmax), num=len(data))
      else:
        x = np.linspace(min(data), max(data), num=len(data))
      y = ecdf(x)
      plt.step(x, y, '.-', label=self.filepaths[i])

    xmin, xmax, ymin, ymax = plt.axis()
    plt.axis((xmin, xmax, 0, 1))
    plt.legend(loc='lower right')
    if FLAGS.xlog:
      plt.xscale('log')
    fig.savefig(FLAGS.plot_name + '.png')
开发者ID:tierney,项目名称:web_perf,代码行数:31,代码来源:plot_cdf.py

示例13: hist_alarms

    def hist_alarms(self,alarms,title_str='alarms',save_figure=False,linestyle='-'):
        fontsize=15
        T_min_warn = self.T_min_warn
        T_max_warn = self.T_max_warn
        if len(alarms) > 0:
            alarms = alarms / 1000.0
            alarms = np.sort(alarms)
            T_min_warn /= 1000.0
            T_max_warn /= 1000.0
            plt.figure()
            alarms += 0.0001
            bins=np.logspace(np.log10(min(alarms)),np.log10(max(alarms)),40)
            #bins=linspace(min(alarms),max(alarms),100)
            #        hist(alarms,bins=bins,alpha=1.0,histtype='step',normed=True,log=False,cumulative=-1)
            #
            plt.step(np.concatenate((alarms[::-1], alarms[[0]])), 1.0*np.arange(alarms.size+1)/(alarms.size),linestyle=linestyle,linewidth=1.5)

            plt.gca().set_xscale('log')
            plt.axvline(T_min_warn,color='r',linewidth=0.5)
            #if T_max_warn < np.max(alarms):
            #    plt.axvline(T_max_warn,color='r',linewidth=0.5)
            plt.xlabel('Time to disruption [s]',size=fontsize)
            plt.ylabel('Fraction of detected disruptions',size=fontsize)
            plt.xlim([1e-4,4e1])#max(alarms)*10])
            plt.ylim([0,1])
            plt.grid()
            plt.title(title_str)
            plt.setp(plt.gca().get_yticklabels(),fontsize=fontsize)
            plt.setp(plt.gca().get_xticklabels(),fontsize=fontsize)
            plt.show()
            if save_figure:
                plt.savefig('accum_disruptions.png',dpi=200,bbox_inches='tight')
        else:
            print(title_str + ": No alarms!")
开发者ID:Sprinterzzj,项目名称:plasma-python,代码行数:34,代码来源:performance.py

示例14: coc_set_up_plot

def coc_set_up_plot(bincenters, hist, gaussian, variable, threshold = 0, sub_par = ""):
    '''
    Set up the plotting space for the Climatological Outlier Check

    :param array bincenters: bin centres of histogram
    :param array hist: histogram values
    :param array gaussian: parameters of gaussian fit [m, s, n]
    :param str variable: name of variable for title
    :param int threshold: threshold to plot
    :param str sub_par: sub parameter for axis label
    '''   
    import matplotlib.pyplot as plt
    
    plt.clf()
    plt.axes([0.1,0.15,0.85,0.75])
    plot_hist = np.array([0.01 if h == 0 else h for h in hist])  
    plt.step(bincenters, plot_hist, 'k-', label = 'standardised months', where='mid')

    # plot fitted Gaussian
    plot_gaussian = utils.gaussian(bincenters, gaussian)
    plt.plot(bincenters, plot_gaussian, 'b-', label = 'Gaussian fit')

    # sort the labels etc
    plt.xlabel("%s offset (IQR)" % variable)                    
    plt.ylabel("Frequency (%s)" % sub_par)
    plt.gca().set_yscale('log')
    plt.axvline(-threshold-1,c='r')
    plt.axvline(threshold+1,c='r')
    plt.axvline(-threshold,c='orange')
    plt.axvline(threshold,c='orange')
    plt.ylim(ymin=0.1)
    plt.title("Climatological Gap Check - %s - %s" % (sub_par, variable) )        

    return  # coc_set_up_plot
开发者ID:rjhd2,项目名称:HadISD_v2,代码行数:34,代码来源:climatological.py

示例15: plot_concurrency

def plot_concurrency(trans_stats, filename):
    sorted_keys = trans_stats.keys()
    sorted_keys.sort()
    # outfilename = filename[0:filename.rfind(".")]+'_concur.csv'
    # outfile = open(outfilename, "w")
    for key in sorted_keys:
        max_time = 65000
        trans_stats[key].sort()
        step = []
        concur = []
        for i in xrange(0, 65000, 10):
            step.append(i)
            pos = 0
            c = 0
            while (pos < len(trans_stats[key])):
                if (trans_stats[key][pos][0] > i):
                    break
                c = trans_stats[key][pos][1]
                pos += 1
            concur.append(c)
            # line = ("%d,%d") % (i,c)
            # outfile.write(line)
        plt.step(step, concur)
        label='dest_'+key
        # plt.xlim(0, max_time)
        # plt.ylim(0, max_conr+1)
    plt.legend()
    outfile = filename[0:filename.rfind(".")]+'_concur.png'
    plt.savefig(outfile)
开发者ID:xwang149,项目名称:Dsim,代码行数:29,代码来源:simviz.py


注:本文中的matplotlib.pyplot.step函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。