本文整理汇总了Python中matplotlib.pyplot.stem函数的典型用法代码示例。如果您正苦于以下问题:Python stem函数的具体用法?Python stem怎么用?Python stem使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了stem函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: stem_hist
def stem_hist(img, plotTitle):
import matplotlib.pyplot as plt
from matplotlib import cm
imgarray = img.calc_hist()
plt.figure()
plt.stem(arange(img.grayLevel), imgarray)
plt.title(plotTitle)
示例2: impz
def impz(b, a=1):
"""Plot step and impulse response of an FIR filter.
b : float
Forward terms of the FIR filter.
a : float
Feedback terms of the FIR filter. (Default value = 1)
From http://mpastell.com/2010/01/18/fir-with-scipy/
Returns
-------
None
"""
l = len(b)
impulse = np.repeat(0., l)
impulse[0] = 1.
x = np.arange(0, l)
response = sp.lfilter(b, a, impulse)
plt.subplot(211)
plt.stem(x, response)
plt.ylabel('Amplitude')
plt.xlabel(r'n (samples)')
plt.title(r'Impulse response')
plt.subplot(212)
step = sp.cumsum(response)
plt.stem(x, step)
plt.ylabel('Amplitude')
plt.xlabel(r'n (samples)')
plt.title(r'Step response')
plt.subplots_adjust(hspace=0.5)
示例3: plotstft
def plotstft(sxx, Fs=100):
winlen = int(len(sxx[0]))
# with plt.():
fig1 = plt.figure()
ax = fig1.add_subplot(1,1,1)
ctr = int(winlen / 2)
faxis = np.multiply(Fs / 2, np.linspace(0, 1, ctr))*60
ratio = []
for dft in sxx:
mag = abs(dft[0:ctr])
max_idx, max_val = max(enumerate(mag), key = lambda p: p[1])
ptotal = np.square(np.linalg.norm(mag,2))
pmax = np.square(np.absolute(max_val))
# print('max power: {}'.format(max_val))
frac = pmax/ptotal
# print(frac)
ratio.append(frac)
ax.plot(faxis, mag, linewidth=3.0)
ax.set_xlabel('Frequency (RPM)')
ax.set_ylabel('|H(f)|')
ax.set_title('User 4 STFT Spectrum')
font = {'family' : 'sans-serif ',
'weight' : 'bold',
'size' : 30}
rc('font', **font)
fig1.savefig('STFTPlot.png')
fig2 = plt.figure()
plt.stem(np.linspace(1,len(ratio),num=len(ratio)),ratio, linewidth=3.0)
plt.xlabel('Window (10s)', fontsize = 60)
plt.ylabel('Symmetry in Pedaling', fontsize = 60)
fig2.savefig('RatioPlot.png')
示例4: run_OMP
def run_OMP(plot=False, **options):
"""Recover one signal using OMP."""
n = options.pop('n', 128)
k = options.pop('k', 5)
m = options.pop('m', 20)
dist = options.pop('dist', 'uniform')
seed = options.pop('seed', None)
return_locals = options.pop('return_locals', True)
print ('Recovering signal wiht n=%(n)i, k=%(k)i and m=%(m)i using OMP' %
locals())
if seed:
np.random.seed(seed)
x = get_sparse_x(n, k, dist=dist)
if seed:
np.random.seed(seed + 198)
A = random_dict(m, n)
y = np.dot(A, x)
x_hat, residues, scores, Delta = omp(A, y, save_data=True)
if plot:
plt.figure()
plt.stem(range(n), x, 'r-', 'ro', 'k:')
plt.stem(range(n), x_hat, 'b:', 'bx', 'k:')
plt.show()
print 'error', norm(x - x_hat.reshape(n, 1))
if return_locals:
return locals()
示例5: _periodogram_plot
def _periodogram_plot(title, column, data, trend, peaks):
"""display periodogram results using matplotlib"""
periods, power = periodogram(data)
plt.figure(1)
plt.subplot(311)
plt.title(title)
plt.plot(data, label=column)
if trend is not None:
plt.plot(trend, linewidth=3, label="broad trend")
plt.legend()
plt.subplot(312)
plt.title("detrended")
plt.plot(data - trend)
else:
plt.legend()
plt.subplot(312)
plt.title("(no detrending specified)")
plt.subplot(313)
plt.title("periodogram")
plt.stem(periods, power)
for peak in peaks:
period, score, pmin, pmax = peak
plt.axvline(period, linestyle='dashed', linewidth=2)
plt.axvspan(pmin, pmax, alpha=0.2, color='b')
plt.annotate("{}".format(period), (period, score * 0.8))
plt.annotate("{}...{}".format(pmin, pmax), (pmin, score * 0.5))
plt.tight_layout()
plt.show()
示例6: plotImpulseResponse
def plotImpulseResponse(self, xmin=None, xmax=None, ymin_imp=None, ymax_imp=None, ymin_step=None, ymax_step=None):
"""Plot the frequency and phase response of the filter object.
:param xmin: Minimum value for x-axis.
:param xmax: Maximum value for x-axis.
:param ymin_imp: Minimum value for y-axis for the impulse response plot.
:param ymax_imp: Maximum value for y-axis for the impulse response plot.
:param ymin_step: Minimum value for y-axis for the step response plot.
:param ymax_step: Maximum value for y-axis for the step response plot.
"""
# def plotImpulseResponse(b,a=1):
l = len(self.ir)
impulse = np.repeat(0.0, l)
impulse[0] = 1.0
x = np.arange(0, l)
response = sp.signal.lfilter(self.ir, 1, impulse)
mp.subplot(211)
mp.stem(x, response)
mp.ylabel("Amplitude")
mp.xlabel(r"n (samples)")
mp.title(r"Impulse response")
mp.subplot(212)
step = np.cumsum(response)
mp.stem(x, step)
mp.ylabel("Amplitude")
mp.xlabel(r"n (samples)")
mp.title(r"Step response")
mp.subplots_adjust(hspace=0.5)
mp.show()
示例7: moment_ss_shear_bending
def moment_ss_shear_bending(L,Pin,ain):
'''
Shear Bending plot of moment loads of a simply supported beam
L = 4 # total length of beam
Pin = [5] # point moment load
ain = [2] # location of point load
# or more multiple point moments
L = 10
Pin = [3,-15]
ain = [2,6]
'''
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0,L,L*0.02)
V = np.zeros(len(x))
M = np.zeros(len(x))
for a, P in zip(ain, Pin):
V += -P/L
M[x<=a] += -P*x[x<=a]/L
M[x>a] += P*(1-x[x>a]/L)
plt.figure()
plt.title('Point Moment Loads')
plt.subplot(2,1,1)
plt.stem(x,V)
plt.ylabel('V,shear')
plt.subplot(2,1,2)
plt.stem(x,M)
plt.ylabel('M,moment')
示例8: show_ae
def show_ae(autoencoder):
encoder = autoencoder.Encoder()
decoder = autoencoder.Decoder()
encoded_imgs = encoder.predict(X_test)
decoded_imgs = decoder.predict(encoded_imgs)
n = 10
plt.figure(figsize=(20, 6))
for i in range(n):
ax = plt.subplot(3, n, i + 1)
plt.imshow(X_test[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(3, n, i + 1 + n)
plt.stem(encoded_imgs[i].reshape(-1))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(3, n, i + 1 + n + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
示例9: plotVibEpoch
def plotVibEpoch(self, epochTimes, signal=None, points=False):
# indStart = int(epochTimes[0] * qu.s * self.entireVibrationSignal.sampling_rate + self.recordingStartIndex)
# indEnd = int(epochTimes[1] * qu.s * self.entireVibrationSignal.sampling_rate + self.recordingStartIndex)
# epochTVec = self.entireVibrationSignal.t_start + np.arange(indStart, indEnd) * self.entireVibrationSignal.sampling_period
# plt.plot(epochTVec, self.entireVibrationSignal[indStart:indEnd], 'g' + extra)
indStart = int(epochTimes[0] * qu.s * self.vibrationSignalDown.sampling_rate)
indEnd = int(epochTimes[1] * qu.s * self.vibrationSignalDown.sampling_rate)
epochTVec = self.vibrationSignalDown.t_start + np.arange(indStart, indEnd) * self.vibrationSignalDown.sampling_period
stimEnds = (np.array(self.stimEndInds)) / self.downSamplingFactor
stimStarts = (np.array(self.stimStartInds)) / self.downSamplingFactor
stimEndsPresent = [x * self.vibrationSignalDown.sampling_period + self.vibrationSignalDown.t_start
for x in stimEnds if indStart <= x <= indEnd]
stimStartsPresent = [x * self.vibrationSignalDown.sampling_period + self.vibrationSignalDown.t_start
for x in stimStarts if indStart <= x <= indEnd]
extra = ''
if points:
extra = '*-'
plt.plot(epochTVec, self.vibrationSignalDown[indStart:indEnd], 'g' + extra)
plt.stem(stimStartsPresent, np.ones(np.shape(stimStartsPresent)), 'k')
plt.stem(stimEndsPresent, np.ones(np.shape(stimEndsPresent)), 'm')
if not signal is None:
plt.plot(epochTVec, signal[indStart:indEnd], 'r' + extra)
plt.plot(epochTVec, 2 * self.vibrationSignalDownStdDev * np.ones(epochTVec.shape), 'y')
示例10: stemplotf
def stemplotf(v, p):
fig2=plt.figure()
fig2.suptitle('Problem 2b: Data Set %s' % p)
plt.stem(v)
plt.xlabel('k')
plt.ylabel('1/E[alpha_k]')
fig2.savefig('Problem2b_data%s' % p)
示例11: plot_station_res
def plot_station_res(sta_res,ires,perr=False,scale=1):
titles = ('Tangent Force','Normal Force','Tangent Moment','Normal moment','Inflow Angle','Angle of Attack','Reynolds number',
'Local vel.','Axial induction','Radial Induction','Effective Velocity','Lift Coeff','Drag Coeff','Loss Factor',
'CT','CQ','CP','dP','radius','azim','height','ind_vel_a','ind_vel_r')
axis = get_station_res(sta_res,18)
res = get_station_res(sta_res,ires)
axis = np.array(axis) * scale
#plt.figure()
if perr is True:
plt.subplot(211)
plt.plot(axis,res,'-o')
plt.subplot(212)
err = get_station_res(sta_res,-1)
plt.stem(axis, err, 'r-')
else:
plt.figure()
plt.plot(axis,res,'-o')
plt.grid()
plt.title(titles[ires])
plt.show()
return 0
示例12: stepplot
def stepplot(x, y, labels, plot_titles):
"""Generates Correlation Graph.
With the x,y coordinates, labels, and plot titles
established, the step-plots can be generated. Output
is PDF file format"""
plt.figure() #makes new image for each plot
#plot x & y stemplot. format plot points
plt.stem(x, y, linefmt='k--', markerfmt='ro', basefmt='k-')
#set x-axis labels and set them vertical. size 10 font.
plt.xticks(x, labels, rotation='vertical', fontsize = 10)
#set titles for graph and axes
plt.title(plot_titles[0])
plt.xlabel("Biomarkers")
plt.ylabel("Correlation Values")
# slightly move axis away from plot. prevents clipping the labels
plt.margins(0.2)
# Tweak spacing to prevent clipping of tick-labels
plt.subplots_adjust(bottom=0.15)
plt.tight_layout() #prevents labels from being clipped
with PdfPages(plot_titles[0]+'.pdf') as pdf: #creates new file for each figure
pdf.savefig()
示例13: show_spec_in_graph
def show_spec_in_graph(graph, vertex, spec, pos, weight, file_name):
dist = 1.0 - squareform(pdist(spec.T, 'cosine'))
plt.figure()
plt.stem(dist[vertex, :], markerfmt=' ')
rim = graph.new_vertex_property('vector<double>')
rim.set_2d_array(np.array([0, 0, 0, 1]))
rim[graph.vertex(vertex)] = [0.8941176471, 0.1019607843, 0.1098039216, 1]
rim_width = graph.new_vertex_property('float', vals=0.5)
rim_width.a[vertex] = 2
shape = graph.new_vertex_property('int', vals=0)
shape[graph.vertex(vertex)] = 2
size = graph.new_vertex_property('double', vals=10)
size.a[vertex] = 15
correlation = graph.new_vertex_property('double', vals=2)
correlation.a = dist[vertex, :]
vorder = graph.new_vertex_property('int', vals=0)
vorder.a[vertex] = 1
palette = sns.cubehelix_palette(256)
cmap = colors.ListedColormap(palette)
gt_draw.graph_draw(graph, pos=pos, vertex_color=rim, vorder=vorder,
vertex_pen_width=rim_width,
vertex_shape=shape, vertex_fill_color=correlation,
vcmap=cmap, vertex_size=size, edge_color=[0, 0, 0, 0.7],
edge_pen_width=weight, output=file_name + '.png',
output_size=(1200, 1200))
plt.figure()
utils.plot_colorbar(cmap, np.arange(0, 1.01, 0.2), file_name)
示例14: graph
def graph(b,a=1):
#make a graph
w,h = signal.freqz(b,a)
h_dB = 20 * np.log10 (abs(h))
plt.figure()
#plt.subplot(311)
plt.plot(w/max(w),h_dB)
plt.ylim(-150, 5)
plt.ylabel('Magnitude (db)')
plt.xlabel(r'Normalized Frequency (x$\pi$rad/sample)')
plt.title(r'Frequency response')
plt.show()
plt.figure()
l = len(b)
impulse = np.repeat(0.,l); impulse[0] =1.
x = arange(0,l)
response = signal.lfilter(b,a,impulse)
#plt.subplot(312)
plt.stem(x, response)
plt.ylabel('Amplitude')
plt.xlabel(r'n (samples)')
plt.title(r'Impulse response')
plt.show()
#plt.figure()
#plt.subplot(313)
#step = np.cumsum(response)
#plt.stem(x, step)
#plt.ylabel('Amplitude')
#plt.xlabel(r'n (samples)')
#plt.title(r'Step response')
#plt.subplots_adjust(hspace=0.5)
#plt.show()
return 1
示例15: viz_rank
def viz_rank(Oi,k=None):
if k is None:
U, s, VT = np.linalg.svd(Oi)
else:
U, s, VT = thin_svd_randomized(Oi,k)
plt.figure()
plt.stem(np.arange(s.shape[0]),s)