本文整理汇总了Python中matplotlib.pyplot.spy函数的典型用法代码示例。如果您正苦于以下问题:Python spy函数的具体用法?Python spy怎么用?Python spy使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了spy函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: wiki_code
def wiki_code():
N = 51
# Create a sparse matrix in the "list of lists" format.
# This provides a flexible syntax for creating sparse matrices.
A = scpy.sparse.lil_matrix((N, N))
# Finite difference matrices will always have some
# regular structure involving diagonals and off diagonals.
# The lil_matrix object has a function to help you with this.
A.setdiag(np.ones(N)) # The diagonal
A.setdiag(-2*np.ones(N-1),k=1) # The fist upward off-diagonal.
A.setdiag(2*np.ones(N-1), k=-1)
# etc. observe that I leave it to you to insert correct values along the diagonals...
# To fix the boundaries, you'll have to reset some rows.
# The numpy indexing you expect to work will work.
#A[0,:] = np.zeros(N) # zero out the first row
#A[0,0] = 1.0 # set diagonal in that row to 1.0
# For performance, other sparse matrix formats are preferred.
# Convert to "Compressed Row Format" CR
A = A.tocsr()
# Helpful for diagnostics
print A.todense()
# and
plt.spy(A.todense())
plt.show()
示例2: test_tsqr
def test_tsqr(create_func):
mat, data = create_func()
n = mat.shape[1]
q, r = csnmf.tsqr.qr(data)
print q.shape
q = np.array(q)
r = np.array(r)
print r.shape
print np.linalg.norm(mat - np.dot(q, r))
assert np.allclose(mat, np.dot(q, r))
assert np.allclose(np.eye(n, n), np.dot(q.T, q))
assert np.all(r == np.triu(r))
plt.figure()
plt.subplot(2, 4, 1)
plt.imshow(mat, interpolation='nearest')
plt.title('Original matrix')
plt.subplot(2, 4, 2)
plt.imshow(q, interpolation='nearest')
plt.title('$\mathbf{Q}$')
plt.subplot(2, 4, 3)
plt.imshow(np.dot(q.T, q), interpolation='nearest')
plt.title('$\mathbf{Q}^T \mathbf{Q}$')
plt.subplot(2, 4, 4)
plt.imshow(r, interpolation='nearest')
plt.title('$\mathbf{R}$')
plt.subplot(2, 4, 8)
plt.spy(r)
plt.title('Nonzeros in $\mathbf{R}$')
示例3: plot_matrix_fig
def plot_matrix_fig(matrix, filename):
fig = plt.figure()
plt.spy(matrix)
plt.title(filename)
#plt.savefig('/home/igorpesic/Desktop/filename.png', dpi=600)
plt.show()
return
示例4: sparsity
def sparsity(matrix, min_value=0):
"""
https://redmine.epfl.ch/projects/python_cookbook/wiki/Matrix_sparsity_patterns
"""
mat = matrix.matrix
plt.spy(mat, precision=min_value, marker=',')
plt.show()
示例5: plotFeatMatr
def plotFeatMatr(toPlot,featureObjects,featureMat,saveDir,label,badIdx):
nFeats = featureMat.shape[1]
nnzPerFeature = toPlot.getnnz(0)
# get the indices to sort this ish.
# how many should we use?...
# get the top N most common
mostCommon = np.argsort(nnzPerFeature)[-nFeats//7:]
# get their labels
featLabels = [f.label() for f in featureObjects]
# get a version imshow can handle
matImage = toPlot.todense()
# fix the aspect ratio
aspectSkew = len(badIdx)/nFeats
aspectStr = 1./aspectSkew
# plot everything
ax = plt.subplot(1,1,1)
cax = plt.imshow(matImage,cmap=plt.cm.hot_r,aspect=aspectStr,
interpolation="nearest")
plt.spy(toPlot,marker='s',markersize=1.0,color='b',
aspect=aspectStr,precision='present')
cbar = plt.colorbar(cax, ticks=[0, 1], orientation='vertical')
# horizontal colorbar
cbar.ax.set_yticklabels(['Min Feat', 'Max Feat'],
fontsize=g_label)
ax.set_xticks(range(nFeats))
ax.set_xticklabels(featLabels,rotation='vertical')
plt.xlabel("Feature Number",fontsize=g_label)
plt.ylabel("Individual",fontsize=g_label)
return aspectStr
示例6: plot
def plot(f, mesh=None, fig=None, **kwargs):
"""Plot functions/expression in 1D and spy matrices."""
# Decide if function or expression
try:
V = f.function_space
# Not really Scattered
x = V.mesh.vertex_coordinates
# Scattered in the same way
y = f.vertex_values()
isort = np.argsort(x[:, 0])
x = x[isort]
y = y[isort]
# Expression or matrix
except AttributeError:
try:
F = f.toarray()
fig = plt.figure()
plt.spy(F, precision=1e-10)
return fig
# Expression
except AttributeError:
# Evaluate at mesh vertices
assert mesh is not None
x = np.sort(mesh.vertex_coordinates)
y = f.eval(x)
if fig is None:
fig = plt.figure()
ax = fig.gca()
ax.plot(x, y, **kwargs)
return fig
示例7: save_matrix_fig
def save_matrix_fig(matrix, path, filename):
fig = plt.figure()
plt.spy(matrix)
#plt.title(filename)
plt.savefig(path + filename + '.png', dpi=600)
plt.close(fig)
return
示例8: makespyplot
def makespyplot( matrix, name, imgtype=None ):
if not scipy.sparse.isspmatrix( matrix ):
matrix = matrix.toscipy()
with plot.PyPlot( name, ndigits=0, imgtype=imgtype ) as plt:
plt.spy( matrix, markersize=0.8, color='black')
plt.title( name+', nnz = '+str(matrix.nnz) )
示例9: plotSpy
def plotSpy(M, eps, myTitle):
plt.figure()
frame1 = plt.gca()
frame1.get_xaxis().set_ticks([])
frame1.get_yaxis().set_ticks([])
# plt.title(myTitle+",eps="+str(eps))
plt.spy(M, precision=eps, marker=".", markersize=3)
plt.savefig(myTitle + "eps" + str(eps) + ".eps")
示例10: getError
def getError(self):
if plotIt:
plt.spy(self.getAve(self.M))
plt.show()
num = self.getAve(self.M) * self.getHere(self.M)
err = np.linalg.norm((self.getThere(self.M)-num), np.inf)
return err
示例11: plot_sparse
def plot_sparse(mat, filename):
plt.spy(mat, markersize=1)
plt.tight_layout()
#plt.rc('xtick',labelsize=16)
#plt.rc('ytick',labelsize=16)
plt.savefig.format = "pdf"
plt.savefig(filename)
plt.clf()
示例12: plotMatrix
def plotMatrix(A):
''' Spy plot of matrix A.
Arguments:
A: (numpy.array, numpy.matrix, sparse.matrix)
'''
plt.spy(A, markersize=5)
plt.show()
return
示例13: plotSparsity
def plotSparsity(data, xmin=0, ymin=0, xmax=0, ymax=0):
if xmax == 0:
xmax = data.shape[0]
if ymax == 0:
ymax = data.shape[1]
plt.spy(data[xmin:xmax, ymin:ymax])
plt.show()
示例14: makeCouplingAtomPlot
def makeCouplingAtomPlot(n, tag):
import parseXYZ
from mpl_toolkits.mplot3d import Axes3D
mmdir = "/Volumes/s/matrices/matrixmarket/"
mmfile = mmdir + tag + "_A.mm"
xyzdir = "/Volumes/s/keceli/Dropbox/work/SEMO/xyz/"
xyzfile = xyzdir + tag + ".xyz"
mat = getAtomMatrix(mmfile)
nnz = mat.nnz
distW = np.array([0.0] * nnz)
xyz = parseXYZ.getXYZ(xyzfile)
matD = getDistMat(xyz, 5.6)
makeNnzHist(mat, xyz)
xyzW = np.asarray(xyz[1:4])
myrow = np.asarray(mat.row)
mycol = np.asarray(mat.col)
listofAtoms1 = myrow[mycol == n]
listofAtoms2 = mycol[myrow == n]
listofAtoms = np.unique(np.concatenate((listofAtoms1, listofAtoms2)))
print "focused atom number and its coordinates:", n + 1, xyzW[:, n]
print "number of atoms interacting with this atom:", len(listofAtoms)
print "list of interacting atoms:", listofAtoms + 1
print "jmol command:", str(["C" + str(listofAtoms[i] + 1) for i in range(len(listofAtoms))]).replace(
"[", ""
).replace("]", "").replace("'", "")
print "coordinates of interacting atoms", xyzW[:, listofAtoms]
fig = plt.figure()
plt.spy(mat, markersize=1)
fig = plt.figure()
plt.spy(matD, markersize=1)
fig = plt.figure()
plt.plot(listofAtoms, linestyle="None", marker="s")
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
plt.plot(xyzW[0, :], xyzW[1, :], xyzW[2, :], linestyle="None", marker=".", color="black", markersize=2)
plt.plot(
xyzW[0, listofAtoms],
xyzW[1, listofAtoms],
xyzW[2, listofAtoms],
linestyle="None",
marker="o",
color="red",
markersize=3,
)
plt.plot([xyzW[0, n]], [xyzW[1, n]], [xyzW[2, n]], linestyle="None", marker="s", color="blue", markersize=4)
plt.grid(which="major", axis="all")
plt.gca().set_aspect("equal", adjustable="box")
# ax.auto_scale_xyz()
# plt.axis('equal')
ax.set_xlim([-5, 25])
ax.set_ylim([-5, 25])
ax.set_zlim([0, 45])
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
return
示例15: contact_to_distance
def contact_to_distance(M):
N = np.zeros(M.shape)
N[M!=0] = 1/M[M!=0]
s = sparse.csgraph.floyd_warshall(N)
plt.figure()
plt.spy(s, precision=0, markersize=0.00000000000005)
plot_image = plt.imshow(s, vmin=0,vmax=np.percentile(s,99),interpolation='nearest')
plot_image.set_cmap("jet")
plt.show(block=BLOCK)
print s
return s