本文整理汇总了Python中matplotlib.pyplot.setp函数的典型用法代码示例。如果您正苦于以下问题:Python setp函数的具体用法?Python setp怎么用?Python setp使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了setp函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: graph
def graph(excel, dflist):
fig, axes = plt.subplots(nrows=4, ncols=3, figsize=(16, 9), sharex=False, sharey=False)
#fig.subplots_adjust(wspace=0, hspace=0)
fig.subplots_adjust(hspace=0.5, left=0.5, right=0.9, bottom=0.01, top=0.95)
fig.autofmt_xdate()
plt.setp(axes, xticklabels=[], yticks=[])
for i, j in enumerate(dflist):
df = pd.read_excel('C:/Users/TokuharM/Desktop/Python_Scripts/%s' %excel, sheetname ='%s' % j, na_values=['NA'],parse_dates=['date'])
df.sort_index(by = ["date"])
x = df[["date"]]
y = df[["errors"]]
ax = fig.add_subplot(4,3,i+1)
#ax = fig.add_subplot(i/3+1,i%3+1,1)
ax.plot(x, y, "-o") #axに対してラベル幅などの調整を行う
if len(x) > 0:
days = mdates.DayLocator()
daysFmt = mdates.DateFormatter('%m-%d')
ax.xaxis.set_major_locator(days)
ax.xaxis.set_major_formatter(daysFmt)
ax.xaxis.set_ticks(pd.date_range(x.iloc[1,0], x.iloc[-1,0], freq='7d'))
#ax.set_xlabel('Date')
ax.set_ylabel('Errors')
#ax.set_xticklabels('off')
#ax.set_yticklabels('off')
ax.grid()
plt.xticks(rotation=30, fontsize='8')
plt.yticks(range(0,400,30), fontsize='8')
plt.axis('tight')
ax.set_title(j, fontsize='10')
plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=1.0)
plt.show()
示例2: _analyze_class_distribution
def _analyze_class_distribution(csv_filepath,
max_data=1000,
bin_size=25):
"""Plot the distribution of training data over graphs."""
symbol_id2index = generate_index(csv_filepath)
index2symbol_id = {}
for index, symbol_id in symbol_id2index.items():
index2symbol_id[symbol_id] = index
data, y = load_images(csv_filepath, symbol_id2index, one_hot=False)
data = {}
for el in y:
if el in data:
data[el] += 1
else:
data[el] = 1
classes = data
images = len(y)
# Create plot
print("Classes: %i" % len(classes))
print("Images: %i" % images)
class_counts = sorted([count for _, count in classes.items()])
print("\tmin: %i" % min(class_counts))
fig = plt.figure()
ax1 = fig.add_subplot(111)
# plt.title('HASY training data distribution')
plt.xlabel('Amount of available testing images')
plt.ylabel('Number of classes')
# Where we want the ticks, in pixel locations
ticks = [int(el) for el in list(np.linspace(0, 200, 21))]
# What those pixel locations correspond to in data coordinates.
# Also set the float format here
ax1.set_xticks(ticks)
labels = ax1.get_xticklabels()
plt.setp(labels, rotation=30)
min_examples = 0
ax1.hist(class_counts, bins=range(min_examples, max_data + 1, bin_size))
# plt.show()
filename = '{}.pdf'.format('data-dist')
plt.savefig(filename)
logging.info("Plot has been saved as {}".format(filename))
symbolid2latex = _get_symbolid2latex()
top10 = sorted(classes.items(), key=lambda n: n[1], reverse=True)[:10]
top10_data = 0
for index, count in top10:
print("\t%s:\t%i" % (symbolid2latex[index2symbol_id[index]], count))
top10_data += count
total_data = sum([count for index, count in classes.items()])
print("Top-10 has %i training data (%0.2f%% of total)" %
(top10_data, float(top10_data) * 100.0 / total_data))
print("%i classes have more than %i data items." %
(sum([1 for _, count in classes.items() if count > max_data]),
max_data))
示例3: barPlot
def barPlot(self, datalist, threshold, figname):
tally = self.geneCount(datalist)
#Limit the items plotted to those over 1% of the read mass
geneplot = defaultdict()
for g, n in tally.iteritems():
if n > int(sum(tally.values())*threshold):
geneplot[g] = n
#Get plotting values
olist = OrderedDict(sorted(geneplot.items(),key=lambda t: t[0]))
summe = sum(olist.values())
freq = [float(x)/float(summe) for x in olist.values()]
#Create plot
fig = plt.figure()
width = .35
ind = np.arange(len(geneplot.keys()))
plt.bar(ind, freq)
plt.xticks(ind + width, geneplot.keys())
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
plt.show()
fig.savefig(figname)
print("Saved bar plot as: "+figname)
示例4: legend
def legend(self, ax, handles, labels, **kwargs):
'''Make a legend, following guidelines in USGS Illustration Standards, p. 14
ax : matplotlib.pyplot axis object
handles : list
matplotlib.pyplot handles for each plot
labels : list
labels for each plot
kwargs : dict
keyword arguments to matplotlib.pyplot.legend()
'''
lgkwargs = {'title': 'EXPLANATION',
'fontsize': self.legend_headingsize,
'frameon': False,
'loc': 8,
'bbox_to_anchor': (0.5, -0.25)}
lgkwargs.update(kwargs)
mpl.rcParams['font.family'] = self.title_font
lg = ax.legend(handles, labels, **lgkwargs)
plt.setp(lg.get_title(), fontsize=self.legend_titlesize)
#reset rcParams back to default
mpl.rcParams['font.family'] = self.default_font
return lg
示例5: plot_glucose_stems
def plot_glucose_stems( ax, ts ):
# visualize glucose using stems
markers, stems, baselines = ax.stem( ts.time, ts.value,
linefmt='b:' )
plt.setp( markers, color='red', linewidth=.5,
marker='o' )
plt.setp( baselines, marker='None' )
示例6: demo_locatable_axes_hard
def demo_locatable_axes_hard(fig1):
from mpl_toolkits.axes_grid1 import SubplotDivider, LocatableAxes, Size
divider = SubplotDivider(fig1, 2, 2, 2, aspect=True)
# axes for image
ax = LocatableAxes(fig1, divider.get_position())
# axes for colorbar
ax_cb = LocatableAxes(fig1, divider.get_position())
h = [Size.AxesX(ax), Size.Fixed(0.05), Size.Fixed(0.2)] # main axes # padding, 0.1 inch # colorbar, 0.3 inch
v = [Size.AxesY(ax)]
divider.set_horizontal(h)
divider.set_vertical(v)
ax.set_axes_locator(divider.new_locator(nx=0, ny=0))
ax_cb.set_axes_locator(divider.new_locator(nx=2, ny=0))
fig1.add_axes(ax)
fig1.add_axes(ax_cb)
ax_cb.axis["left"].toggle(all=False)
ax_cb.axis["right"].toggle(ticks=True)
Z, extent = get_demo_image()
im = ax.imshow(Z, extent=extent, interpolation="nearest")
plt.colorbar(im, cax=ax_cb)
plt.setp(ax_cb.get_yticklabels(), visible=False)
示例7: PlotScatter
def PlotScatter(x, y, delta, ax, showXTicks):
if x.size < 1:
return
plt.plot(x,y,'.', color=c1, alpha=0.3)
# set xticks
if not showXTicks:
plt.setp(ax.get_xticklabels(), visible=False)
示例8: do_plot
def do_plot(mds, plot, ymax, extra=None):
fig = plt.figure()
ax = fig.add_subplot(111)
steps = mds.Steps.Steps
values = mds.MDS.Values
if ymax is None:
ymax = np.max(values)
Graph.timeSeries(ax, steps, values, 'b', label='MDS', Ave=True)
plt.xlabel('time')
plt.ylabel(r'$ops/sec$')
if not mds.CPU is None:
values = mds.CPU.Values
(handles, labels) = Graph.percent(ax, steps, values, 'k',
label='% CPU', Ave=True)
if (not handles is None) and (not labels is None):
plt.legend(handles, labels)
else:
print "mds.do_plot(): Warning - Plotting CPU utilization failed."
else:
plt.legend()
plt.setp( ax.get_xticklabels(), rotation=30, horizontalalignment='right')
start_time = steps[0]/(24.0*60.0*60.0) + mpl.dates.date2num(datetime.date(1970,1,1))
plt.title("%s metadata operations for %s" %
(mds.name,
mpl.dates.num2date(start_time).strftime("%Y-%m-%d"))
)
if ymax is None:
ymax = ymax
ax.set_ybound(lower=0, upper=ymax)
if plot is None:
plt.show()
else:
plt.savefig(plot)
plt.cla()
示例9: move_rightSlider
def move_rightSlider(self):
""" Re-setup left range line in figure.
Triggered by a change in Qt Widget. NO EVENT is required.
"""
newx = self.ui.horizontalSlider_2.value()
if newx >= self._leftSlideValue and newx != self._rightSlideValue:
# Allowed value: move the value bar
self._rightSlideValue = newx
xlim = self.ui.mainplot.get_xlim()
newx = xlim[0] + newx*(xlim[1] - xlim[0])*0.01
leftx = [newx, newx]
lefty = self.ui.mainplot.get_ylim()
setp(self.rightslideline, xdata=leftx, ydata=lefty)
self.ui.graphicsView.draw()
# Change value
self.ui.lineEdit_4.setText(str(newx))
else:
# Reset the value
self.ui.horizontalSlider_2.setValue(self._rightSlideValue)
return
示例10: plot_bar
def plot_bar(xlabels, Y):
fig = plt.figure()
ax = fig.add_subplot(111)
## the data
N = len(Y)
## necessary variables
ind = np.arange(N) # the x locations for the groups
width = 0.35 # the width of the bars
## the bars
rects1 = ax.bar(ind, Y, width,
color='red')
ax.set_xlim(-width,len(ind)+width)
ax.set_ylim(0, max(Y)*1.2)
ax.set_ylabel('Counts')
ax.set_title('Counts by country')
#xTickMarks = ['Group'+str(i) for i in range(1,6)]
ax.set_xticks(ind+width)
xtickNames = ax.set_xticklabels(xlabels)
plt.setp(xtickNames, rotation=40, fontsize=10, ha='right')
## add a legend
#ax.legend( (rects1[0], rects2[0]), ('Men', 'Women') )
plt.tight_layout()
plt.show()
示例11: plot_tfidf_classfeats
def plot_tfidf_classfeats(dfs):
fig = plt.figure(figsize=(12, 9), facecolor="w")
for i, df in enumerate(dfs):
ax = fig.add_subplot(len(dfs), 1, i+1)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.set_frame_on(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
if i == len(dfs)-1:
ax.set_xlabel("Feature name", labelpad=14, fontsize=14)
ax.set_ylabel("Tf-Idf score", labelpad=16, fontsize=14)
#if i == 0:
ax.set_title("Mean Tf-Idf scores for label = " + str(df.label), fontsize=16)
x = range(1, len(df)+1)
ax.bar(x, df.tfidf, align='center', color='#3F5D7D')
#ax.lines[0].set_visible(False)
ax.set_xticks(x)
ax.set_xlim([0,len(df)+1])
xticks = ax.set_xticklabels(df.feature)
#plt.ylim(0, len(df)+2)
plt.setp(xticks, rotation='vertical') #, ha='right', va='top')
plt.subplots_adjust(bottom=0.24, right=1, top=0.97, hspace=0.9)
plt.show()
示例12: plot_all_trees
def plot_all_trees(p,title='str'):
#=====================================================
""" Plots all rooted trees of order p.
**Example**:
Plot all trees of order 4::
>>> from nodepy import rt
>>> rt.plot_all_trees(4) # doctest: +ELLIPSIS
<matplotlib.figure.Figure object at ...>
"""
import matplotlib.pyplot as pl
forest=list_trees(p)
nplots=len(forest)
nrows=int(np.ceil(np.sqrt(float(nplots))))
ncols=int(np.floor(np.sqrt(float(nplots))))
if nrows*ncols<nplots: ncols=ncols+1
for tree in forest:
if title=='str': ttitle=tree
else: ttitle=''
tree.plot(nrows,ncols,forest.index(tree)+1,ttitle=ttitle)
fig=pl.figure(1)
pl.setp(fig,facecolor='white')
return fig
示例13: _drawScatterPlot
def _drawScatterPlot(self,dates, values, plotidx, plotcount, title, refaxs):
if( refaxs == None):
logging.debug("initializing scatter plot")
fig = plt.figure()
#1 inch height for each author graph. So recalculate with height. Else y-scale get mixed.
figHt = float(self.commitGraphHtPerAuthor*plotcount)
fig.set_figheight(figHt)
#since figureheight is in inches, set around maximum of 0.75 inches margin on top.
topmarginfrac = min(0.15, 0.85/figHt)
logging.debug("top/bottom margin fraction is %f" % topmarginfrac)
fig.subplots_adjust(bottom=topmarginfrac, top=1.0-topmarginfrac, left=0.05, right=0.95)
else:
fig = refaxs.figure
axs = fig.add_subplot(plotcount, 1, plotidx,sharex=refaxs,sharey=refaxs)
axs.grid(True)
axs.plot_date(dates, values, marker='.', xdate=True, ydate=False)
axs.autoscale_view()
#Pass None as 'handles' since I want to display just the titles
axs.set_title(title, fontsize='small',fontstyle='italic')
self._setXAxisDateFormatter(axs)
plt.setp( axs.get_xmajorticklabels(), visible=False)
plt.setp( axs.get_xminorticklabels(), visible=False)
return(axs)
示例14: plotSTAGE
def plotSTAGE(show=False):
fig, stage = plt.subplots(1)
title="Stage for PT's in Nu'uuli Stream"
#### PT1 stage N1
stage.plot_date(PT1['stage'].index,PT1['stage'],marker='None',ls='-',color='r',label='N1')
print 'Lowest PT1 stage: '+'%.1f'%PT1['stage'].min()
#### PT2 stage N2
stage.plot_date(PT2['stage'].index,PT2['stage'],marker='None',ls='-',color='y',label='N2')
## show storm intervals?
showstormintervals(stage,shade_color='g',show=True)
#### Format X axis and Primary Y axis
stage.set_title(title)
stage.set_ylabel('Stage height in cm')
stage.set_ylim(0,145)
stage.legend(loc=2)
#### Add Precip data from Timu1
AddTimu1(fig,stage,Precip['Timu-Nuuuli1-15'])
AddTimu1(fig,stage,Precip['Timu-Nuuuli2-15'],LineColor='g')
plt.setp(stage.get_xticklabels(),rotation='vertical',fontsize=9)
plt.subplots_adjust(left=0.1,right=0.83,top=0.93,bottom=0.15)
#### Legend
plt.legend(loc=1)
fig.canvas.manager.set_window_title('Figure 1: '+title)
stage.grid(True)
show_plot(show)
return
示例15: trendPicture
def trendPicture(rt,comment):
colorList = ['b','g','r','c','m','y','k']
threadList = []
for i in range(len(rt)):
threadList.append(i)
dataList1 = [int(x) for x in rt]
dataList2 = [int(x) for x in comment]
string = str(len(dataList1)) + u'条微博趋势图'
plt.title(string)
lines = []
titles = []
line1 = plt.plot(threadList, dataList1)
plt.setp(line1, color=colorList[0], linewidth=2.0)
titles.append(u'转发')
lines.append(line1)
line2 = plt.plot(threadList, dataList2)
plt.setp(line2, color=colorList[1], linewidth=2.0)
titles.append(u'评论')
lines.append(line2)
plt.legend(lines, titles)
plt.show()