本文整理汇总了Python中matplotlib.pyplot.semilogy函数的典型用法代码示例。如果您正苦于以下问题:Python semilogy函数的具体用法?Python semilogy怎么用?Python semilogy使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了semilogy函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: draw_log_hist
def draw_log_hist(X):
X = X.tocsc().tocoo() # collapse multiple records. I don't think it is needed
# we are interested only in existence of a token in user posts, not it's quantity
vf = np.vectorize(lambda x: 1 if x > 0 else 0)
X_data_booleaned = vf(X.data)
X = coo_matrix((X_data_booleaned, (X.row, X.col)), shape=X.shape)
# now we will calculate (1, 1, ... 1) * X to sum up rows
features_counts = np.ones(X.shape[0]) * X
features_counts_sorted = np.sort(features_counts)
features_counts_sorted = features_counts_sorted[::-1] # this is how decreasing sort looks like in numpy
ranks = np.arange(features_counts_sorted.size)
plt.figure()
plt.semilogy(ranks, features_counts_sorted,
color='red',
linewidth=2)
plt.title('For each feature (word), how many users has it at least once?')
plt.ylabel("number of users which has this word at least once")
plt.xlabel("rank")
# plt.show()
return features_counts
示例2: main
def main():
conn = krpc.connect()
vessel = conn.space_center.active_vessel
streams = init_streams(conn,vessel)
print vessel.control.throttle
plt.axis([0, 100, 0, .1])
plt.ion()
plt.show()
t0 = time.time()
timeSeries = []
vessel.control.abort = False
while not vessel.control.abort:
t_now = time.time()-t0
tel = Telemetry(streams,t_now)
timeSeries.append(tel)
timeSeriesRecent = timeSeries[-40:]
plt.cla()
plt.semilogy([tel.t for tel in timeSeriesRecent], [norm(tel.angular_velocity) for tel in timeSeriesRecent])
#plt.semilogy([tel.t for tel in timeSeriesRecent[1:]], [quat_diff_test(t1,t2) for t1,t2 in zip(timeSeriesRecent,timeSeriesRecent[1:])])
#plt.axis([t_now-6, t_now, 0, .1])
plt.draw()
plt.pause(0.0000001)
#time.sleep(0.0001)
with open('log.json','w') as f:
f.write(json.dumps([tel.__dict__ for tel in timeSeries],indent=4))
print 'The End'
示例3: pal5
def pal5():
from streams import usys
r0 = np.array([[8.312877511,0.242593717,16.811943627]])
v0 = ([[-52.429087,-96.697363,-8.156130]]*u.km/u.s).decompose(usys).value
x0 = np.append(r0,v0)
acc = np.zeros((2,3))
potential = LawMajewski2010()
def F(t,X):
x,y,z,px,py,pz = X.T
dH_dq = potential._acceleration_at(X[...,:3], 2, acc)
return np.hstack((np.array([px, py, pz]).T, dH_dq))
integrator = DOPRI853Integrator(F)
nsteps = 100000
dt = 0.1
print(nsteps*dt*u.Myr)
nsteps_per_pullback = 10
d0 = 1e-5
LEs, xs = lyapunov(x0, integrator, dt, nsteps,
d0=d0, nsteps_per_pullback=nsteps_per_pullback)
print("Lyapunov exponent computed")
plt.clf()
plt.semilogy(LEs, marker=None)
plt.savefig('pal5_le.png')
plt.clf()
plt.plot(np.sqrt(xs[:,0]**2+xs[:,1]**2), xs[:,2], marker=None)
plt.savefig('pal5_orbit.png')
示例4: plot_magnif_from_time_terms
def plot_magnif_from_time_terms(time_terms, magnifs, fmt="--ro", magnif_log_scale=False):
plt.xlabel("time term, (t - t_max)/t_E")
plt.ylabel("magnification")
if magnif_log_scale:
plt.semilogy(time_terms, magnifs, fmt)
else:
plt.plot(time_terms, magnifs, fmt)
示例5: __call__
def __call__(self,u,v,w,iteration):
q = 4
plt.cool()
if self.x == None:
ny = v.shape[1]
nz = v.shape[0]
self.x,self.y = np.meshgrid(range(ny),range(nz))
x,y = self.x,self.y
if self.iterations == None:
self.iterations = self.sim.bulk_calc(getIteration())
all_itr = self.iterations
if self.xvar == None:
class temp(sim_operation):
def get_params(self):
return ["u"]
def __call__(self,u):
return np.max(self.sim.ddx(u))
self.xvar = self.sim.bulk_calc(temp())
xvar_series = self.xvar
min = np.min(xvar_series)
max = np.max(xvar_series)
if min <= 0:
min = 0.000001
if max <= min:
max = 0.00001
avgu = np.average(u,2)
avgv = np.average(v,2)
avgw = -np.average(w,2)
xd = self.sim.ddx(u)
xd2d = np.max(xd,2)
xd1d = np.max(xd2d,1)
plt.subplot(221)
plt.imshow(avgu)
plt.quiver(x[::q,::q],y[::q,::q],avgv[::q,::q],avgw[::q,::q])
plt.title('Avg u')
plt.axis("tight")
plt.subplot(222)
plt.imshow(xd2d)
plt.title('Max x Variation (y-z)')
plt.axis("tight")
plt.subplot(223)
plt.plot(xd1d)
plt.title('Max x Variation (z)')
plt.axis("tight")
plt.subplot(224)
plt.plot(all_itr,xvar_series, '--')
plt.plot([iteration,iteration],[min,max])
plt.semilogy()
plt.title('Max x Variation (t)')
plt.axis("tight")
示例6: plot_gens
def plot_gens(images, rowlabels, losses):
'''
From great jupyter notebook by Tim Sainburg:
http://github.com/timsainb/Tensorflow-MultiGPU-VAE-GAN
'''
examples = 8
fig, ax = plt.subplots(nrows=len(images), ncols=examples, figsize=(18, 8))
for i in range(examples):
for j in range(len(images)):
ax[(j, i)].imshow(create_image(images[j][i]), cmap=plt.cm.gray,
interpolation='nearest')
ax[(j, i)].axis('off')
title = ''
for i in rowlabels:
title += ' {}, '.format(i)
fig.suptitle('Top to Bottom: {}'.format(title))
plt.show()
#fig.savefig(''.join(['imgs/test_',str(epoch).zfill(4),'.png']),dpi=100)
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(20, 10), linewidth = 4)
D_plt, = plt.semilogy((losses['discriminator']), linewidth=4, ls='-',
color='b', alpha=.5, label='D')
G_plt, = plt.semilogy((losses['generator']), linewidth=4, ls='-',
color='k', alpha=.5, label='G')
plt.gca()
leg = plt.legend(handles=[D_plt, G_plt],
fontsize=20)
leg.get_frame().set_alpha(0.5)
plt.show()
示例7: plot_trunc_gr_model
def plot_trunc_gr_model(aval, bval, min_mag, max_mag, dmag, catalogue=None,
completeness=None, figure_size=None, filename=None, filetype='png',
dpi=300):
"""
Plots a Gutenberg-Richter model
"""
input_model = TruncatedGRMFD(min_mag, max_mag, dmag, aval, bval)
if not catalogue:
# Plot only the modelled recurrence
annual_rates, cumulative_rates = _get_recurrence_model(input_model)
plt.semilogy(annual_rates[:, 0], annual_rates[:, 1], 'b-')
plt.semilogy(annual_rates[:, 0], cumulative_rates, 'r-')
plt.xlabel('Magnitude', fontsize='large')
plt.ylabel('Annual Rate', fontsize='large')
plt.legend(['Incremental Rate', 'Cumulative Rate'])
_save_image(filename, filetype, dpi)
else:
completeness = _check_completeness_table(completeness, catalogue)
plot_recurrence_model(input_model,
catalogue,
completeness,
input_model.bin_width,
figure_size,
filename,
filetype,
dpi)
示例8: plota_teste5
def plota_teste5(arqsaida):
n, c, t = np.loadtxt(arqsaida, unpack=True)
# Calcula os coeficientes de um ajuste a um polinômio de grau 2 usando
# o método dos mínimos quadrados
coefs = np.polyfit(n, c, 2)
p = np.poly1d(coefs)
# set_yscale('log')
# set_yscale('log')
plt.semilogy(n, p(n), label='$n^2$')
plt.semilogy(n, c, 'ro', label='bubble sort')
# Posiciona a legenda
plt.legend(loc='upper left')
# Posiciona o título
plt.title('Análise da complexidade de \ntempo do método da bolha')
# Rotula os eixos
plt.xlabel('Tamanho do vetor (n)')
plt.ylabel('Número de comparações')
plt.savefig('bubble5.png')
plt.show()
示例9: plot_prob_sums
def plot_prob_sums(prob_sums, folder):
"""Plot the probability sums of the original motif against iterations."""
# Create the folder if it does not exist
if not os.path.exists("figures/%s" % folder):
os.makedirs("figures/%s" % folder)
# Plot on automatic axis
figure_file = "figures/%s/probability_mass.png" % folder
plt.title("%s | Prob Mass of Original Motif" % folder)
plt.ylabel("Probability Mass")
plt.xlabel("Iterations")
plt.grid(True)
plt.plot(prob_sums)
pylab.savefig(figure_file, format="png")
plt.clf()
# Plot on semi-log axis
figure_file = "figures/%s/probability_mass_semilog.png" % folder
plt.title("%s | Prob Mass of Original Motif" % folder)
plt.xlabel("Iterations")
plt.ylabel("Probability Mass (semi-log)")
plt.grid(True)
plt.semilogy(prob_sums)
pylab.savefig(figure_file, format="png")
plt.clf()
示例10: plot_KLs
def plot_KLs(KLs, folder, filename, title):
if not os.path.exists("figures/%s" % folder):
os.makedirs("figures/%s" % folder)
# Plot on automatic axis
figure_file = "figures/%s/%s.png" % (folder, filename)
plt.title("%s | %s" % (folder, title))
plt.ylabel("KL")
plt.xlabel("Iterations")
plt.grid(True)
plt.plot(KLs)
pylab.savefig(figure_file, format="png")
plt.clf()
# Plot on semi-log axis
try:
figure_file = "figures/%s/%s_semilog.png" % (folder, filename)
plt.title("%s | %s" % (folder, title))
plt.xlabel("Iterations")
plt.ylabel("KL (semi-log)")
plt.grid(True)
plt.semilogy(KLs)
pylab.savefig(figure_file, format="png")
except:
debug("Could not generate semilog plot.")
plt.clf()
示例11: on_off_experiment2
def on_off_experiment2(num_motifs=100,filename="gini-vs-mi-correlation-in-on-off-spoofs.pdf"):
"""compare MI vs Gini on biological_motifs"""
bio_motifs = [getattr(tfdf,tf) for tf in tfdf.tfs]
Ns = map(len, bio_motifs)
spoofses = [spoof_on_off_motif(motif,num_motifs=num_motifs,trials=1) for motif in bio_motifs]
spoof_ginises = mmap(motif_gini,tqdm(spoofses))
spoof_mises = mmap(total_motif_mi,tqdm(spoofses))
cors, ps = [],[]
for ginis, mis in zip(ginises, mises):
cor, p = pearsonr(ginis,mis)
cors.append(cor)
ps.append(p)
q = fdr(ps)
plt.scatter(cors,ps,filename="gini-vs-mi-correlation-in-on-off-spoofs.pdf")
plt.plot([-1,1],[q,q],linestyle='--',label="FDR-Adjusted Significance Level")
plt.semilogy()
plt.legend()
plt.xlabel("Pearson Correlation Coefficient")
plt.ylabel("P value")
plt.xlim([-1,1])
plt.ylim([10**-4,1+1])
cor_ps = zip(cors,ps)
sig_negs = [(c,p) for (c,p) in cor_ps if c < 0 and p < q]
sig_poses = [(c,p) for (c,p) in cor_ps if c > 0 and p < q]
insigs = [(c,p) for (c,p) in cor_ps if p > q]
def weighted_correlation(cor_p_Ns):
cors,ps,Ns = transpose(cor_p_Ns)
return sum([cor*N for (cor,N) in zip (cors,Ns)])/sum(Ns)
plt.title("Gini-MI Correlation Coefficient vs. P-value for On-Off Simulations from Prokaryotic Motifs")
maybesave(filename)
示例12: plot_cmf_with_arbitrary_input
def plot_cmf_with_arbitrary_input(catalog, cmf_input, bins=20, hist_range=(4, 7),
mass_column_name='mass', **kwargs):
fig = plt.figure()
number_in_bin_q2, bin_edges, ch = plt.hist(np.log10(catalog[mass_column_name]), cumulative=-1, log=True, bins=bins, range=hist_range)
bin_centers_q2 = (bin_edges[1:] + bin_edges[:-1])/2.
plt.clf()
plt.plot(bin_centers_q2, number_in_bin_q2, 'ko' )
plt.semilogy()
plt.xlabel(r"log$_{10}$ (M$_{GMC}$ / M$_\odot$)")
plt.ylabel("n(M > M')")
M_0, N_0, gamma = cmf_input
m_array = np.linspace(min(bin_edges), max(bin_edges), 50)
n_array = truncated_cloudmass_function([M_0, N_0, gamma], 10**m_array)
plt.plot(m_array, n_array, label="$\\gamma = {0:.2f}$,\n$M_0={1:.2e}$,\n$N_0={2:.1f}$".format(gamma, M_0, N_0))
text_string = r"$N(M' > M) = N_0 \left [ \left ( \frac{M}{M_0} \right )^{\gamma+1} - 1 \right ]$"
plt.text(4.1, 3, text_string, fontsize=18)
plt.xlim(*hist_range)
plt.ylim(0.7, 1e3)
plt.legend(loc='upper right')
return fig
示例13: throughputs
def throughputs(output='throughputs.pdf'):
"""
Plot throughputs, compares to HST WFC3 UVIS F600LP
:param output: name of the output file
:type output: str
:return: None
"""
#comparison
bp1 = S.ObsBandpass('wfc3,uvis2,f600lp')
#VIS
bp, bpEoL = _VISbandpass()
#ghost
bpG, bpEoLG = _VISbandpassGhost()
#plot
plt.semilogy(bp1.wave/10., bp1.throughput, 'r-', label='WFC3 F600LP')
plt.semilogy(bp.wave/10., bp.throughput, 'b-', label='VIS Best Estimate')
plt.semilogy(bpEoL.wave/10., bpEoL.throughput, 'g--', label='VIS EoL Req.')
plt.semilogy(bpG.wave/10., bpG.throughput, 'm-', label='VIS Ghost')
plt.semilogy(bpEoLG.wave/10., bpEoLG.throughput, 'y-.', label='VIS Ghost EoL')
plt.xlim(230, 1100)
plt.xlabel(r'Wavelength [nm]')
plt.ylabel(r'Total System Throughput')
plt.legend(shadow=True, fancybox=True, loc='best')
plt.savefig(output)
plt.close()
示例14: test_airy_1d
def test_airy_1d(display=False):
""" Compare analytic airy function results to the expected locations
for the first three dark rings and the FWHM of the PSF."""
lam = 1.0e-6
D = 1.0
r, airyprofile = airy_1d(wavelength=lam, diameter=D, length=20480, pixelscale=0.0001)
# convert to units of lambda/D
r_norm = r*_ARCSECtoRAD / (lam/D)
if display:
plt.semilogy(r_norm,airyprofile)
plt.axvline(1.028/2, color='k', ls=':')
plt.axhline(0.5, color='k', ls=':')
plt.ylabel('Intensity relative to peak')
plt.xlabel('Separation in $\lambda/D$')
for rad in airy_zeros:
plt.axvline(rad, color='red', ls='--')
airyfn = scipy.interpolate.interp1d(r_norm, airyprofile)
# test FWHM occurs at 1.028 lam/D, i.e. HWHM is at 0.514
assert (airyfn(0.5144938) - 0.5) < 1e-5
# test first minima occur near 1.22 lam/D, 2.23, 3.24 lam/D
# TODO investigate/improve numerical precision here?
for rad in airy_zeros:
#print(rad, airyfn(rad), airyfn(rad+0.005))
assert airyfn(rad) < airyfn(rad+0.0003)
assert airyfn(rad) < airyfn(rad-0.0003)
示例15: create_plot
def create_plot(freq_mat, data_mat, length_vec, color_keys, plot_name, output_dir=""):
print("Creating plot: {0:s}".format(plot_name) )
pl.figure(1)
pl.clf()
pl.hold(True)
for idx, freq in enumerate(freq_mat):
data = data_mat[idx]
length = length_vec[idx]
num_pos = 0
num_neg = 0
for el in data:
if el > 0:
num_pos += 1
if el < 0:
num_neg +=1
if num_pos > 0:
pl.semilogy(freq/1e9, data, color_keys[length])
if num_neg > 0:
pl.semilogy(freq/1e9, -data, color_keys[length] + ":")
pl.xlabel('Frequency (GHz)')
pl.ylabel("PUL R ($\Omega$/m)")
output_name = os.path.join(output_dir, plot_name)
pl.savefig(output_name)