本文整理汇总了Python中matplotlib.pyplot.plot_date函数的典型用法代码示例。如果您正苦于以下问题:Python plot_date函数的具体用法?Python plot_date怎么用?Python plot_date使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了plot_date函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_gestures_and_flux_score
def plot_gestures_and_flux_score(plot_title, gestures, flux, flux_diffs):
"""
Plots a gesture score with flux values as well - this one suffers the window bug
"""
idx = gestures.index
# ax = plt.figure(figsize=(35,10),frameon=False,tight_layout=True).add_subplot(111)
ax = plt.figure(figsize=(14, 6), frameon=False, tight_layout=True).add_subplot(211)
ax.xaxis.set_major_locator(dates.SecondLocator(bysecond=[0]))
ax.xaxis.set_major_formatter(dates.DateFormatter("%H:%M"))
ax.yaxis.grid()
plt.ylim(-0.5, 8.5)
plt.yticks(np.arange(9), ['n', 'ft', 'st', 'fs', 'fsa', 'vss', 'bs', 'ss', 'c'])
plt.ylabel("gesture")
for n in gestures.columns:
plt.plot_date(idx.to_pydatetime(), gestures[n], '-', label=n)
# Plot Flux Data
ax2 = plt.subplot(212, sharex=ax)
idx = flux.index
plt.plot_date(idx.to_pydatetime(), flux, '-', label=flux.name)
plt.ylabel("flux")
# Possible New Ideas Stage
# new_ideas = flux_diffs.ix[flux_diffs > transitions.NEW_IDEA_THRESHOLD]
# new_ideas = new_ideas.index
# new_idea_colour = 'r'
# for n in range(len(new_ideas)):
# x_val = new_ideas[n].to_pydatetime()
# ax.axvline(x=x_val, color=new_idea_colour, alpha=0.7, linestyle='--')
# ax2.axvline(x=x_val, color=new_idea_colour, alpha=0.7, linestyle='--')
# Output Stage
plt.savefig(plot_title.replace(":", "_") + '.pdf', dpi=300, format="pdf")
plt.close()
示例2: get_data_from_internet
def get_data_from_internet(stack, date):
baseurl = "http://chartapi.finance.yahoo.com/instrument/1.0/"+ stack +"/chartdata;type=quote;range="+date+"/csv"
sourece_code = urllib.request.urlopen(baseurl).read().decode()
# print(sourece_code)
stock_data = []
split_source = sourece_code.split("\n")
for line in split_source:
split_line = line.split(',')
if len(split_line) == 6:
if 'values' not in line and 'labels' not in line:
stock_data.append(line)
print(stock_data)
if 'd' in date:
date, close, high, low, openp, volume = np.loadtxt(stock_data,
delimiter=',',
unpack=True,
converters={0: bytesdata2num('%y%m%d %H%M', 'd')})
else:
date, close, high, low, openp, volume = np.loadtxt(stock_data,
delimiter=',',
unpack=True,
converters={0: bytesdata2num('%Y%m%d', 'y')})
plt.plot_date(date, close, '-', label='从网络加载股价')
plt.xlabel("时间")
plt.ylabel("股价")
plt.title("练习从网络加载数据!")
rect = plt.figure(1).patch
rect.set_facecolor('c')
plt.legend() #plot有label选项时,必须要有此句
plt.show()
示例3: graph_date_v_charge
def graph_date_v_charge(data):
"""
Graphs charge data over time.
@param data: Parsed data from log file; output of L{parseLog}
"""
print "Graphing Date v. Charge"
# Build color data based on charge percentage
colors = []
for charge in data['charges']:
colors.append((1-charge/100.0, charge/100.0, 0.3))
f1 = pyplot.figure(1)
for i in range(len(data['dates'])):
pyplot.plot_date(data['dates'][i], data['charges'][i], 'o', color=colors[i],
markersize=3, markeredgewidth=0.1)
pyplot.ylim(0,100)
pyplot.xlabel('Date')
pyplot.ylabel('Charge [%]')
pyplot.title('Laptop Battery Charge')
pyplot.grid(True)
pyplot.figure(1).autofmt_xdate()
pyplot.savefig(outfile + ".png", dpi=500)
pyplot.close(f1)
示例4: plot_timeline_epoch
def plot_timeline_epoch(usr1, usr2, interaction1=None, interaction2=None):
print "########## Plotting for ", usr1, usr2, "###################"
if interaction1 is not None:
tweets_per_day1 = extract_daily_interaction(interaction1)
plt.plot_date(x=tweets_per_day1.keys(), y=tweets_per_day1.values(), fmt=u'b*')
print usr1, len(tweets_per_day1.keys()), sorted(tweets_per_day1.keys())
if interaction2 is not None:
#print usr2, len(interaction2)
tweets_per_day2 = extract_daily_interaction(interaction2)
plt.plot_date(x=tweets_per_day2.keys(), y=tweets_per_day2.values(), fmt=u'xr')
if interaction1 is not None and interaction2 is not None:
print usr1, usr2
plt.title("Mentions 2 users: from " + usr1 + " (blue); from " + usr2 + " (red).")
elif interaction1 is not None:
plt.title("Mentions from " + usr1 + " to " + usr2 + ".")
elif interaction2 is not None:
plt.title("Mentions from " + usr2 + " to " + usr1 + ".")
else:
print "No interaction between 2 users to be plotted."
return
plt.xticks(rotation=70)
plt.ylabel("# tweets per day")
plt.grid(True)
plt_name = WORKING_FOLDER + "2_usr_interaction/interaction_" + usr1 + "_and_" + usr2 + ".png"
plt.savefig(plt_name, bbox_inches='tight', dpi=440)
print "########## Plotting DONE for ", usr1, usr2, "###############"
plt.clf()
示例5: draw_viz
def draw_viz(t1, t2):
data_store = sds()
delta = datetime.timedelta(days=1)
t1_data = []
t2_data = []
dates = []
d_cursor = data_store.get_company_data(t1)
for d in d_cursor:
t1_data.append(d["Adj Clos"])
dates.append(d["date"])
d_cursor = data_store.get_company_data(t2)
for d in d_cursor:
t2_data.append(d["Adj Clos"])
print len(t1_data), len(t2_data)
p, sprd, beta = fc.get_adf(t1, t2, spread=True)
dates = mpl.dates.date2num(dates)
p1 = plt.plot_date(dates, sprd, "b-.", label="Sprd")
p2 = plt.plot_date(dates, t1_data, "g-.", label=t1)
p3 = plt.plot_date(dates, t2_data, "r-.", label=t2)
plt.grid(True)
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0)
def add_vert_line(event):
plt.avspan(event.xdata, event.xdata, ls="p-")
print "Beta: %f" % beta
plt.show()
示例6: plotAllData
def plotAllData( self, allData, particleSize, room ):
dates = allData['Time']
print 'Plotting and saving averages'
for shift in ['Day Shift','Night Shift','Empty Lab']:
pyplot.figure(num=None, figsize=(16,9), dpi=100, facecolor='w', edgecolor='k')
pyplot.plot_date(dates,allData[shift + ' Avg'], 'b-')
pyplot.xlabel( 'Date (MT) ')
pyplot.ylabel( 'Average Count' )
pyplot.title( room + ' ' + shift + ' Averages for ' + particleSize + ' um Counts' )
pyplot.savefig( room + particleSize + 'Avg' + shift[:-6] + '.png')
pyplot.set_yscale('log')
pyplot.title( room + ' ' + shift + ' Averages for ' + particleSize + ' um Counts Log Scale' )
pyplot.savefig( room + particleSize + 'Avg' + shift[:-6] + '.png')
print 'Plotting and saving baselines'
for shift in ['Day Shift','Night Shift','Empty Lab']:
pyplot.figure(num=None, figsize=(16,9), dpi=100, facecolor='w', edgecolor='k')
pyplot.plot_date(dates,allData[shift + ' Base'], 'b-')
pyplot.xlabel( 'Date (MT)' )
pyplot.ylabel( 'Baseline' )
pyplot.title( room + ' ' + shift + ' Baselines for ' + particleSize + ' um Counts' )
pyplot.savefig( room + particleSize + 'Base' + shift[:-6] + '.png')
pyplot.set_yscale('log')
pyplot.title( room + ' ' + shift + ' Baselines for ' + particleSize + ' um Counts Log Scale' )
pyplot.savefig( room + particleSize + 'Base' + shift[:-6] + '.png')
示例7: stockData
def stockData(stock):
stock_price_url='http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=10y/csv'
source_req=urllib2.Request(stock_price_url)
source_response=urllib2.urlopen(source_req)
source_code=source_response.read().decode()
stock_data=[]
split_source=source_code.split('\n')
for line in split_source:
split_line=line.split(',')
if len(split_line)==6:
if 'values' not in line and 'labels' not in line:
stock_data.append(line)
date,closep,highp,lowp,openp,volume=np.loadtxt(stock_data,
delimiter=',',
unpack=True,
converters={0: bytespdate2num('%Y%m%d')})
plt.plot_date(date,closep,'-',label='price')
plt.xlabel('Date')
plt.ylabel('Price')
plt.title('Intresting Graph \n Check it out')
plt.show()
示例8: main
def main():
# Request data from NIWAData
response = get(URL, auth=HTTPBasicAuth(USERNAME, PASSWORD))
# Successful requests will return HTTP status code 200
if response.status_code != 200:
raise Exception('Failed to request NIWAData: %s' % response.reason)
# Parse the JSON response
data = response.json()
# You can retrieve the attributes about the dataset,
analysis_time = data['data']['analysisTime']
measure_mame = data['data']['measureName']
name = data['data']['name']
unit_symbol = data['data']['unitSymbol']
# and also the values
values = data['data']['values']
pprint(data)
# Plot the values, where x[0] has the datetime, and x[1] the current float value
# Note that we are sorting the values by datetime, as they may
# not always come sorted
dates = np.array([datetime.strptime(x[0], '%Y-%m-%dT%H:%M:%S%z') for x in sorted(values.items())])
values = np.array([x[1] for x in sorted(values.items())])
plt.plot_date(x=dates, y=values, fmt="r-")
plt.title(name)
plt.ylabel("Value in %s" % unit_symbol)
plt.grid(True)
plt.show()
示例9: try_prod24h_before
def try_prod24h_before(columns=['Tout', 'vWind', 'vWindavg24', 'prod24h_before'], add_const=False, y=y):
plt.close('all')
X = all_data[columns]
res = mlin_regression(y, X, add_const=add_const)
timesteps = ens.gen_hourly_timesteps(dt.datetime(2015,12,17,1), dt.datetime(2016,1,15,0))
plt.subplot(2,1,1)
plt.plot_date(timesteps, y, 'b', label='Actual prodution')
plt.plot_date(timesteps, res.fittedvalues, 'r', label='Weather model')
prstd, iv_l, iv_u = wls_prediction_std(res)
plt.plot_date(timesteps, iv_u, 'r--', label='95% conf. int.')
plt.plot_date(timesteps, iv_l, 'r--')
plt.ylabel('MW')
plt.legend(loc=2)
plt.subplot(2,1,2)
plt.plot_date(timesteps, res.resid, '-', label='Residual')
plt.ylabel('MW')
plt.legend()
print "MAE = " + str(mae(res.resid))
print "MAPE = " + str(mape(res.resid, y))
print "RMSE = " + str(rmse(res.resid))
print res.summary()
return res
示例10: plot_on_timeline
def plot_on_timeline(col, verbose=True):
"""Plots points on a timeline
Parameters
----------
col : np.array
verbose : boolean
iff True, display the graph
Returns
-------
matplotlib.figure.Figure
Figure containing plot
Returns
-------
matplotlib.figure.Figure
"""
col = utils.check_col(col)
# http://stackoverflow.com/questions/1574088/plotting-time-in-python-with-matplotlib
if is_nd(col):
col = col.astype(datetime)
dates = matplotlib.dates.date2num(col)
fig = plt.figure()
plt.plot_date(dates, [0] * len(dates))
if verbose:
plt.show()
return fig
示例11: plot
def plot(self, widget):
plt.xlabel('Date/Time')
plt.ylabel('Temperature [%sF]' % self.degree_symbol)
plt.title('Recorded temperature history')
plt.grid(True)
plt.plot_date(self.plotX, self.plotY, fmt='bo', tz=None, xdate=True)
plt.show()
示例12: graph_csv
def graph_csv(output_directory, csv_file, plot_title, output_filename, y_label=None, precision=None, graph_height="600", graph_width="1500", graph_type="line", graph_color="black"):
""" Single metric graphing function using matplotlib"""
if not os.path.getsize(csv_file):
return False, None
y_label = y_label or plot_title
days, impressions = numpy.loadtxt(csv_file, unpack=True, delimiter=",", converters={ 0: convert_to_mdate})
fig = plt.figure()
fig.set_size_inches(float(graph_width) / 80, float(graph_height) / 80)
if graph_type == "line":
line_style = "-"
marker = " "
else:
marker = "."
line_style = None
plt.plot_date(x=days, y=impressions, linestyle=line_style, marker=marker, color=graph_color)
plt.title(plot_title)
plt.ylabel(y_label)
plt.grid(True)
# Get current axis and its xtick labels
labels = plt.gca().get_xticklabels()
for label in labels:
label.set_rotation(30)
plot_file_name = os.path.join(output_directory, output_filename + ".png")
fig.savefig(plot_file_name)
plt.close()
return True, None
示例13: graph_csv_n
def graph_csv_n(output_directory, csv_file, plot_title, output_filename, columns, y_label=None, precision=None, graph_height="600", graph_width="1500", graph_type="line", graph_color="black"):
if not os.path.getsize(csv_file):
return False, None
y_label = y_label or plot_title
fig = plt.figure()
fig.set_size_inches(float(graph_width) / 80, float(graph_height) / 80)
if graph_type == "line":
line_style = "-"
marker = None
else:
marker = "."
line_style = None
np_data = numpy.loadtxt(csv_file, delimiter=",", converters={ 0: convert_to_mdate})
np_data = np_data.transpose()
xdata = np_data[0]
ydata = [[]]*len(np_data)
for i in range(1,len(np_data)):
print i
ydata[i-1] = numpy.asarray(np_data[i], dtype=numpy.float)
plt.plot_date(x=xdata, y=ydata[i-1], linestyle=line_style, marker=marker, color=graph_color)
plt.title(plot_title)
plt.ylabel(y_label)
plt.grid(True)
# Get current axis and its xtick labels
labels = plt.gca().get_xticklabels()
for label in labels:
label.set_rotation(30)
plot_file_name = os.path.join(output_directory, output_filename + ".png")
fig.savefig(plot_file_name)
plt.close()
return True, None
示例14: graph_csv_new
def graph_csv_new(output_directory, csv_files, plot_title, output_filename, columns, y_label=None, precision=None, graph_height="600", graph_width="1500", graph_type="line", graph_color="black"):
y_label = y_label or plot_title
fig = plt.figure()
fig.set_size_inches(float(graph_width) / 80, float(graph_height) / 80)
if graph_type == "line":
line_style = "-"
marker = None
else:
marker = "."
line_style = None
colors = ['red', 'green', 'blue', 'yellow']
i = 0
for csv_file in csv_files:
days, impressions = numpy.loadtxt(csv_file, unpack=True, delimiter=",", converters={ 0: convert_to_mdate})
plt.plot_date(x=days, y=impressions, linestyle=line_style, marker=marker, color=colors[i])
i+=1
plt.title(plot_title)
plt.ylabel(y_label)
plt.grid(True)
# Get current axis and its xtick labels
labels = plt.gca().get_xticklabels()
for label in labels:
label.set_rotation(30)
plot_file_name = os.path.join(output_directory, output_filename + ".png")
fig.savefig(plot_file_name)
plt.close()
return True, None
示例15: recalc_final_result
def recalc_final_result(base_dir="/home/oferb/docs/train_project", experiment_id="webcam2", use_resized=False):
import shutil
if use_resized:
frame_base = "frames_resized"
else:
frame_base = "frames"
frames_dir = "%s/data/%s/%s" % (base_dir, experiment_id, frame_base)
resized_files_dir = os.path.join(base_dir, "output", experiment_id, "frames_resized_done")
resized_files_dir_times = os.path.join(base_dir, "output", experiment_id, "frames_resized_done_times")
files = os.listdir(resized_files_dir)
import re
ids = []
for filename in files:
ids.append(re.findall(r"\d+", filename))
img_times = []
for an_id, filename in zip(ids, files):
img_filename = utils.get_image_filename(frames_dir, int(an_id[0]), use_resized)
img_times.append(dt.datetime.fromtimestamp(os.path.getctime(img_filename)))
shutil.copy2(
os.path.join(resized_files_dir, filename),
os.path.join(resized_files_dir_times, "%s_%s" % (img_times[-1], filename)),
)
values = np.ones([len(img_times), 1])
plt.plot_date(img_times, values)