当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.plot函数代码示例

本文整理汇总了Python中matplotlib.pyplot.plot函数的典型用法代码示例。如果您正苦于以下问题:Python plot函数的具体用法?Python plot怎么用?Python plot使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了plot函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: roc_plot

def roc_plot(y_true, y_pred):
    """Plots a receiver operating characteristic.

    Parameters
    ----------
    y_true : array_like
        Observed labels, either 0 or 1.
    y_pred : array_like
        Predicted probabilities, floats on [0, 1].

    Notes
    -----
    .. plot:: pyplots/roc_plot.py

    References
    ----------
    .. [1] Pedregosa, F. et al. "Scikit-learn: Machine Learning in Python."
       *Journal of Machine Learning Research* 12 (2011): 2825–2830.
    .. [2] scikit-learn developers. "Receiver operating characteristic (ROC)."
       Last modified August 2013.
       http://scikit-learn.org/stable/auto_examples/plot_roc.html.
    """
    fpr, tpr, __ = roc_curve(y_true, y_pred)
    roc_auc = auc(fpr, tpr)

    plt.plot(fpr, tpr, label='ROC curve (area = {:0.2f})'.format(roc_auc))
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver Operating Characteristic')
    plt.legend(loc='lower right')
开发者ID:grivescorbett,项目名称:verhulst,代码行数:33,代码来源:plots.py

示例2: plot_predict_is

    def plot_predict_is(self,h=5,**kwargs):
        """ Plots forecasts with the estimated model against data
            (Simulated prediction with data)

        Parameters
        ----------
        h : int (default : 5)
            How many steps to forecast

        Returns
        ----------
        - Plot of the forecast against data 
        """     

        figsize = kwargs.get('figsize',(10,7))

        plt.figure(figsize=figsize)
        date_index = self.index[-h:]
        predictions = self.predict_is(h)
        data = self.data[-h:]

        t_params = self.transform_z()

        plt.plot(date_index,np.abs(data-t_params[-1]),label='Data')
        plt.plot(date_index,predictions,label='Predictions',c='black')
        plt.title(self.data_name)
        plt.legend(loc=2)   
        plt.show()          
开发者ID:ekote,项目名称:pyflux,代码行数:28,代码来源:egarchmreg.py

示例3: showNormedSqFlucts

def showNormedSqFlucts(modes, *args, **kwargs):
    """Show normalized square fluctuations via :func:`~matplotlib.pyplot.plot`.
    """

    import matplotlib.pyplot as plt
    sqf = calcSqFlucts(modes)
    args = list(args)
    modesarg = []
    i = 0
    while i < len(args):
        if isinstance(args[i], (VectorBase, ModeSet, NMA)):
            modesarg.append(args.pop(i))
        else:
            i += 1
    show = [plt.plot(sqf/(sqf**2).sum()**0.5, *args,
                     label='{0}'.format(str(modes)), **kwargs)]
    plt.xlabel('Indices')
    plt.ylabel('Square fluctuations')
    for modes in modesarg:
        sqf = calcSqFlucts(modes)
        show.append(plt.plot(sqf/(sqf**2).sum()**0.5, *args,
                    label='{0}'.format(str(modes)), **kwargs))
    if SETTINGS['auto_show']:
        showFigure()
    return show
开发者ID:karolamik13,项目名称:ProDy,代码行数:25,代码来源:plotting.py

示例4: plotAlphas

def plotAlphas(datasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix): 
    """
    Plot the variation in the error with alpha for penalisation. 
    """
    for i, datasetName in enumerate(datasetNames): 
        #plt.figure(i)    
        
        
        for k in range(len(sampleMethods)):
            outfileName = outputDir + datasetName + sampleMethods[k] + fileNameSuffix + ".npz"
            data = numpy.load(outfileName)
    
            errors = data["arr_0"]
            meanMeasures = numpy.mean(errors, 0)
            
            foldInd = 4 
    
            for i in range(sampleSizes.shape[0]):
                plt.plot(cvScalings, meanMeasures[i, foldInd, 2:8], next(linecycler), label="m="+str(sampleSizes[i]))
                    
            plt.xlabel("Alpha")
            plt.ylabel('Error')
            xmin, xmax = cvScalings[0], cvScalings[-1]
            plt.xlim((xmin,xmax))

        
            plt.legend(loc="upper left")
    plt.show()
开发者ID:pierrebo,项目名称:wallhack,代码行数:28,代码来源:ProcessResults.py

示例5: draw_ranges_for_parameters

def draw_ranges_for_parameters(data, title='', save_path='./pictures/'):
  parameters = data.columns.values.tolist()

  # remove flight name parameter
  for idx, parameter in enumerate(parameters):
    if parameter == 'flight_name':
      del parameters[idx]

  flight_names = np.unique(data['flight_name'])

  print len(flight_names)

  for parameter in parameters:
    plt.figure()

    axis = plt.gca()

    # ax.set_xticks(numpy.arange(0,1,0.1))
    axis.set_yticks(flight_names)
    axis.tick_params(labelright=True)
    axis.set_ylim([94., 130.])
    plt.grid()

    plt.title(title)
    plt.xlabel(parameter)
    plt.ylabel('flight name')

    colors = iter(cm.rainbow(np.linspace(0, 1,len(flight_names))))

    for flight in flight_names:
      temp = data[data.flight_name == flight][parameter]

      plt.plot([np.min(temp), np.max(temp)], [flight, flight], c=next(colors), linewidth=2.0)
    plt.savefig(save_path+title+'_'+parameter+'.jpg')
    plt.close()
开发者ID:prikhodkop,项目名称:AnalysisWorkbench,代码行数:35,代码来源:data_utils_v2.py

示例6: default_run

 def default_run(self):
     """
     Plots the results, saves the figure, and finally displays it from simulating codewords with Sum-prod and Max-prod
     algorithms across variance levels. This combines the results in one plot.
     :return:
     """
     if not os.path.exists("./graphs"):
         os.makedirs("./graphs")
     self.save_time = str(int(time.time()))
     self.simulate(Decoder.SUM_PROD)
     self.compute_error()
     plt.plot([math.log10(x) for x in self.variance_levels], [math.log10(y) for y in self.bit_error_probability],
              "ro-", label="Sum-Prod")
     self.simulate(Decoder.MAX_PROD)
     self.compute_error()
     plt.plot([math.log10(x) for x in self.variance_levels], [math.log10(y) for y in self.bit_error_probability],
              "g^--", label="Max-Prod")
     plt.legend(loc=2)
     plt.title("Hamming Decoder Factor Graph Simulation Results\n" +
               r"$\log_{10}(\sigma^2)$ vs. $\log_{10}(P_e)$" + " for Max-Prod & Sum-Prod Algorithms\n" +
               "Sample Size n = %(codewords)s Codewords \n Variance Levels = %(levels)s"
               % {"codewords": str(self.iterations), "levels": str(self.variance_levels)})
     plt.xlabel("$\log_{10}(\sigma^2)$")
     plt.ylabel(r"$\log_{10}(P_e)$")
     plt.savefig("graphs/%(time)s-max-prod-sum-prod-%(num_codewords)s-codewords-variance-bit_error_probability.png" %
                 {"time": self.save_time,
                  "num_codewords": str(self.iterations)}, bbox_inches="tight")
     plt.show()
开发者ID:finnergizer,项目名称:hamming-decoder-factor-graph,代码行数:28,代码来源:simulator.py

示例7: work

    def work(self, **kwargs):
        self.__dict__.update(kwargs)
        self.worked = True
        samples = LGMM1(rng=self.rng,
                size=(self.n_samples,),
                **self.LGMM1_kwargs)
        samples = np.sort(samples)
        edges = samples[::self.samples_per_bin]
        centers = .5 * edges[:-1] + .5 * edges[1:]
        print edges

        pdf = np.exp(LGMM1_lpdf(centers, **self.LGMM1_kwargs))
        dx = edges[1:] - edges[:-1]
        y = 1 / dx / len(dx)

        if self.show:
            plt.scatter(centers, y)
            plt.plot(centers, pdf)
            plt.show()
        err = (pdf - y) ** 2
        print np.max(err)
        print np.mean(err)
        print np.median(err)
        if not self.show:
            assert np.max(err) < .1
            assert np.mean(err) < .01
            assert np.median(err) < .01
开发者ID:AshBT,项目名称:hyperopt,代码行数:27,代码来源:test_tpe.py

示例8: tuning

def tuning(x, y, err=None, smooth=None, ylabel=None, pal=None):
    """
    Plot a tuning curve
    """
    if smooth is not None:
        xs, ys = smoothfit(x, y, smooth)
        plt.plot(xs, ys, linewidth=4, color="black", zorder=1)
    else:
        ys = asarray([0])
    if pal is None:
        pal = sns.color_palette("husl", n_colors=len(x) + 6)
        pal = pal[2 : 2 + len(x)][::-1]
    plt.scatter(x, y, s=300, linewidth=0, color=pal, zorder=2)
    if err is not None:
        plt.errorbar(x, y, yerr=err, linestyle="None", ecolor="black", zorder=1)
    plt.xlabel("Wall distance (mm)")
    plt.ylabel(ylabel)
    plt.xlim([-2.5, 32.5])
    errTmp = err
    errTmp[isnan(err)] = 0
    rng = max([nanmax(ys), nanmax(y + errTmp)])
    plt.ylim([0 - rng * 0.1, rng + rng * 0.1])
    plt.yticks(linspace(0, rng, 3))
    plt.xticks(range(0, 40, 10))
    sns.despine()
    return rng
开发者ID:speron,项目名称:sofroniew-vlasov-2015,代码行数:26,代码来源:plots.py

示例9: scatter

def scatter(x, y, equal=False, xlabel=None, ylabel=None, xinvert=False, yinvert=False):
    """
    Plot a scatter with simple formatting options
    """
    plt.scatter(x, y, 200, color=[0.3, 0.3, 0.3], edgecolors="white", linewidth=1, zorder=2)
    sns.despine()
    if xlabel:
        plt.xlabel(xlabel)
    if ylabel:
        plt.ylabel(ylabel)
    if equal:
        plt.axes().set_aspect("equal")
        plt.plot([0, max([x.max(), y.max()])], [0, max([x.max(), y.max()])], color=[0.6, 0.6, 0.6], zorder=1)
        bmin = min([x.min(), y.min()])
        bmax = max([x.max(), y.max()])
        rng = abs(bmax - bmin)
        plt.xlim([bmin - rng * 0.05, bmax + rng * 0.05])
        plt.ylim([bmin - rng * 0.05, bmax + rng * 0.05])
    else:
        xrng = abs(x.max() - x.min())
        yrng = abs(y.max() - y.min())
        plt.xlim([x.min() - xrng * 0.05, x.max() + xrng * 0.05])
        plt.ylim([y.min() - yrng * 0.05, y.max() + yrng * 0.05])
    if xinvert:
        plt.gca().invert_xaxis()
    if yinvert:
        plt.gca().invert_yaxis()
开发者ID:speron,项目名称:sofroniew-vlasov-2015,代码行数:27,代码来源:plots.py

示例10: LinRegTest

def LinRegTest(XTrain, YTrain, close, filename):
	'''
	Using RandomForest learner to predict how much the price will change in 5 days
	@filename: the file's true name is ML4T-filename
	@XTrain: the train data for feature
	@YTrain: the train data for actual price after 5 days
	@close: the actual close price of Test data set
	@k: the number of trees in the forest
	'''
	
	XTest, YTest = TestGenerator(close)

	#plot thge feature
	plt.clf()
	fig = plt.figure()
	fig.suptitle('The value of features')
	plt.plot(range(100), XTest[0:100, 0], 'b', label = 'One day price change')
	plt.plot(range(100), XTest[0:100, 1], 'r', label = 'difference between two day price change')
	plt.legend(loc = 4)
	plt.ylabel('Price')
	filename4 = 'feature' + filename + '.pdf'
	fig.savefig(filename4, format = 'pdf')

	LRL = LinRegLearner()
	cof = LRL.addEvidence(XTrain, YTrain)
	YLearn = LRL.query(XTest, cof)
	return YLearn
开发者ID:cwss091,项目名称:Forecast_Project,代码行数:27,代码来源:forecaster.py

示例11: visualize

def visualize(segmentation, expression, visualize=None, store=None, title=None, legend=False):
    notes = []
    onsets = []
    values = []
    param = ['Dynamics', 'Articulation', 'Tempo']
    converter = NoteList()
    converter.bpm = 100
    if not visualize:
        visualize = selectSubset(param)
    for segment, expr in zip(segmentation, expression):
        for note in segment:
            onsets.append(converter.ticks_to_milliseconds(note.on)/1000.0)
            values.append([expr[i] for i in visualize])
    import matplotlib.pyplot as plt
    fig = plt.figure(figsize=(12, 4))
    for i in visualize:
        plt.plot(onsets, [v[i] for v in values], label=param[i])
    plt.ylabel('Deviation')
    plt.xlabel('Score time (seconds)')
    if legend:
        plt.legend(bbox_to_anchor=(0., 1), loc=2, borderaxespad=0.)

    if title:
        plt.title(title)
    #dplot = fig.add_subplot(111)
    #sodplot = fig.add_subplot(111)
    #dplot.plot([i for i in range(len(deltas[0]))], deltas[0])
    #sodplot.plot([i for i in range(len(sodeltas[0]))], sodeltas[0])
    if store:
        fig.savefig('plots/{0}.png'.format(store))
    else:
        plt.show()
开发者ID:bjvanderweij,项目名称:expressivity,代码行数:32,代码来源:performancerenderer.py

示例12: graph

def graph(f, n, xmin, xmax, resolution=1001):
    xlist = np.linspace(xmin, xmax, n)
    ylist = f(xlist)
    xlist_fine = np.linspace(xmin, xmax, resolution)
    ylist_fine = p_L(xlist_fine, xlist, ylist)
    plt.plot(xlist, ylist, 'ro')
    plt.plot(xlist_fine, ylist_fine)
开发者ID:Annekfu,项目名称:python_primer,代码行数:7,代码来源:Lagrange_poly2.py

示例13: plot

 def plot(self, nbins=100, range=None):
     plt.plot([self.F_[0], self.F_[0]], [0, 100], '--r', lw=2)
     h = plt.hist(self.F_, nbins, range)
     plt.xlabel('F-value')
     plt.ylabel('Count')
     plt.grid()
     return h
开发者ID:SherazKhan,项目名称:decoding-brain-challenge-2016,代码行数:7,代码来源:stats.py

示例14: draw_img_for_viewing_ice

	def draw_img_for_viewing_ice(self):
		#print "Press 'p' to save PNG."
		global colmax
		global colmin
		fig = P.figure(num=None, figsize=(13.5, 5), dpi=100, facecolor='w', edgecolor='k')
		cid1 = fig.canvas.mpl_connect('key_press_event', self.on_keypress_for_viewing)
		cid2 = fig.canvas.mpl_connect('button_press_event', self.on_click)
		canvas = fig.add_subplot(121)
		canvas.set_title(self.filename)
		self.axes = P.imshow(self.inarr, origin='lower', vmax = colmax, vmin = colmin)
		self.colbar = P.colorbar(self.axes, pad=0.01)
		self.orglims = self.axes.get_clim()
		canvas = fig.add_subplot(122)
		canvas.set_title("Angular Average")
		
		maxAngAvg = (self.inangavg).max()
		numQLabels = len(eDD.iceHInvAngQ.keys())+1
		labelPosition = maxAngAvg/numQLabels
		for i,j in eDD.iceHInvAngQ.iteritems():
			P.axvline(j,0,colmax,color='r')
			P.text(j,labelPosition,str(i), rotation="45")
			labelPosition += maxAngAvg/numQLabels
			
		P.plot(self.inangavgQ, self.inangavg)
		P.xlabel("Q (A-1)")
		P.ylabel("I(Q) (ADU/srad)")
		pngtag = original_dir + "peakfit-gdvn_%s.png" % (self.filename)
		P.savefig(pngtag)
		print "%s saved." % (pngtag)
		P.close()
开发者ID:sellberg,项目名称:iceFinderCampaign,代码行数:30,代码来源:compareAverageRuns-aerojet.py

示例15: plot

def plot():
    elements_list = get_elements()
    x = range(0, len(elements_list))
    y = elements_list
    print(x)
    plt.plot(x, y)
    plt.show()
开发者ID:manxshearwater-clockshift,项目名称:run-pyAudioAnalysis,代码行数:7,代码来源:AnalyzeNPY.py


注:本文中的matplotlib.pyplot.plot函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。