当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.pie函数代码示例

本文整理汇总了Python中matplotlib.pyplot.pie函数的典型用法代码示例。如果您正苦于以下问题:Python pie函数的具体用法?Python pie怎么用?Python pie使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了pie函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: comparison_pie_plot

def comparison_pie_plot(path, data, txt):
    """
    Plots a pie chart comparison of the # of times each AD found
    the highest best/average final solution for all simulations
    """
    # The slices will be ordered and plotted counter-clockwise.

    unzipped_data = list(zip(*data))
    num_sims = len(unzipped_data)
    sizes = [0] * len(data)
    for simulation_data in unzipped_data:
        m = max(simulation_data)
        max_indexes = [i for i, j in enumerate(simulation_data) if j == m]
        for i in max_indexes:
            sizes[i] += 1

    # percentages
    for i in range(len(sizes)):
        sizes[i] = round((sizes[i] / num_sims) * 100)

    # "explode" all slices
    explode = [0.1] * len(data)

    plt.figure()
    plt.title("Comparison of the # of times each AD found the highest " + txt + " final solution for all simulations")

    plt.pie(sizes, explode=tuple(explode), labels=AD_labels, colors=AD_color, autopct='%1.1f%%', shadow=True)

    plt.axis('equal')  # Set aspect ratio to be equal so that pie is drawn as a circle.
    plt.savefig(path + "/pie_" + txt + ".png", bbox_inches='tight')
    plt.close()

    return
开发者ID:aclima93,项目名称:Evolutionary_Computation,代码行数:33,代码来源:plot_auto_adapt.py

示例2: display_channel_efficiency

    def display_channel_efficiency(self):

        size = 0

        start_time = self.pcap_file[0].time
        end_time = self.pcap_file[len(self.pcap_file) - 1].time

        duration = (end_time - start_time)/1000

        for i in range(len(self.pcap_file) - 1):
            size += len(self.pcap_file[i])
        ans = (((size * 8) / duration) / BW_STANDARD_WIFI) * 100
        ans = float("%.2f" % ans)
        labels = ['utilized', 'unutilized']
        sizes = [ans, 100.0 - ans]
        colors = ['g', 'r']

        # Make a pie graph
        plt.clf()
        plt.figure(num=1, figsize=(8, 6))
        plt.axes(aspect=1)
        plt.suptitle('Channel efficiency', fontsize=14, fontweight='bold')
        plt.title("Bits/s: " + str(float("%.2f" % ((size*8)/duration))),fontsize = 12)
        plt.rcParams.update({'font.size': 17})
        plt.pie(sizes, labels=labels, autopct='%.2f%%', startangle=60, colors=colors, pctdistance=0.7, labeldistance=1.2)

        plt.show()
开发者ID:yarongoldshtein,项目名称:Wifi_Parser,代码行数:27,代码来源:ex3.py

示例3: plot_percent_mentions

def plot_percent_mentions(tweets, gop = False, save_to = None):
  '''
  Plots the percent mentions of each candidate (filtered for party)
  Used for Task 3.
  ''' 

  percents = tweets.get_percent_mentions(gop)

  candidates = [] 
  mentions = [] 
  for c, ment in percents:
    if c == "other": 
      other_v = ment 
    else:   
      candidates.append(CANDIDATE_NAMES[c[:-1]])
      mentions.append(ment)
  candidates.append("other")
  mentions.append(other_v)

  fig = plt.figure(figsize = (FIGWIDTH, FIGHEIGHT)) 

  plt.pie(mentions, labels = candidates, autopct='%1.1f%%')
  if gop: 
    plt.title("Percent of Mentions per GOP candidate")
  else: 
    plt.title("Percent of Mentions per candidate")
 
  plt.show() 
  if save_to: 
    fig.savefig(save_to)
开发者ID:karljiangster,项目名称:Python-Fun-Stuff,代码行数:30,代码来源:debate_tweets.py

示例4: plotPieChart

    def plotPieChart(self, title=None, cmap_name='Pastel2'):
        if sys.hexversion >= 0x02700000:
            self.fig.set_tight_layout(True)

        # Generate plot data
        labels, ydata = self._getPlotData()
        totalobjects = float(np.sum(ydata))
        fracs = [ynum / totalobjects for ynum in ydata]

        explode = np.zeros(len(fracs))  # non zero makes the slices come out of the pie

        # plot pie chart
        cmap = plt.cm.get_cmap(cmap_name)
        colors = cmap(np.linspace(0., 0.9, len(fracs)))
        plt.pie(fracs, explode=explode, labels=labels, autopct='%1.1f%%', shadow=False, startangle=90,
                colors=colors)

        # generate plot / axis labels
        for axis in self.ax.get_xticklabels():
            axis.set_fontsize(self.xticksize)

        if self.unit is None:  # NOTE this is hacked in so it only works with DataPerParameterClass
            self.unit = self._getParLabelAndUnit(self._planetProperty)[1]  # use the default unit defined in this class
        self._yaxis_unit = self.unit

        if title is None:
            title = 'Planet {0} Bins'.format(self._gen_label(self._planetProperty, self.unit))  # NOTE not always planet

        plt.title(title)
        plt.xlim(-1.5, 1.5)
开发者ID:ryanvarley,项目名称:ExoData,代码行数:30,代码来源:plots.py

示例5: analyzeData

def analyzeData(db):
    # Total calls, incoming, outgoing (and percents). Times to/from liz and percentage.
    cursor = db.cursor()
    
    numCalls = cursor.execute('''SELECT Count(*) FROM calls''').fetchone()[0]
    print numCalls, "calls from May to July 2014."
    
    numIncoming = cursor.execute('''SELECT Count(*) FROM calls WHERE incoming=1''').fetchone()[0]
    print numIncoming, "incoming calls. (" + str((numIncoming*100.0)/numCalls) + "%)"
    numOutgoing = cursor.execute('''SELECT Count(*) FROM calls WHERE incoming=0''').fetchone()[0]
    print numOutgoing, "outgoing calls. (" + str((numOutgoing*100.0)/numCalls) + "%)"
    # Display the info in a pie chart
    labels = 'Incoming Calls', 'Outgoing Calls'
    values = [numIncoming, numOutgoing]
    colors = ['orange', 'seagreen']
    plt.pie(values, labels=labels, colors=colors, autopct='%1.1f%%')
    plt.axis('equal')
    plt.show()
    
    numLiz = cursor.execute('''SELECT Count(*) FROM calls WHERE phone_number='630-380-4152';
            ''').fetchone()[0]
    percentLiz = (numLiz*100.0)/numCalls
    print numLiz, "calls to/from Liz. (" + str(percentLiz) + "%)"
    # Display the info in a pie chart
    labels = 'Liz', 'Others'
    sizes = [int(percentLiz), 100 - int(percentLiz)]
    colors = ['turquoise', 'gold']
    plt.pie(sizes, colors=colors, labels=labels, autopct='%1.1f%%')
    plt.axis('equal')
    plt.show()

    return
开发者ID:mjpatter88,项目名称:pyPhone,代码行数:32,代码来源:pyPhone.py

示例6: plot_NA_ratio_features

def plot_NA_ratio_features(dataset, feature_names, missing_value_string='nan'):

	y, x = dataset.shape
	ind = np.zeros((x, 1)).reshape(1, x)

	for j in range(y):
		for i in range(x):
			# print str(dataset[j, i])
			if missing_value_string == str(dataset[j, i]):
				ind[0, i] += 1

	ind = (ind/y*100)


	labels = 'NA', ''
	colors = ['yellowgreen', 'lightcoral']
	explode = (0, 0)
	plt.rcParams.update({'font.size': 8})
	plt.suptitle("NA ration", fontsize=16)

	for i in range(x):
		ax = plt.subplot(5, 5, i+1)
		ax.set_title(feature_names[i])
		sizes = [ind[0, i], 100-ind[0, i]]
		plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%')
		# autopct permits to add the value of the part in chart
		plt.axis('equal')

	plt.show()
开发者ID:ravediamond,项目名称:kaggle_titanic,代码行数:29,代码来源:analysis.py

示例7: create_pie_chart

def create_pie_chart(data, title, filename, cutoff=0.01, verbose=False):
    """Create a pie chart from the given data

    Params:
    data- a collections.Counter where the keys should be the labels to
        the graph

    """
    total = float(sum(data.values()))
    frac_labels = []
    other_count = 0
    # compute the fraction for each label
    for cnt in data.keys():
        fraction = float(data[cnt]) / total
        if verbose:
            print "{}: {}".format(cnt, fraction)
        # if this slice is too small, just add it to other small
        # totals and display them together
        if fraction < cutoff:
            other_count += data[cnt]
            continue
        frac_labels.append((fraction, cnt))
    if other_count > 0:
        frac_labels.append((float(other_count) / total, "Other"))
    frac_labels.sort(key=lambda entry: entry[1])
    fractions, labels = zip(*frac_labels)
    plt.figure()
    plt.pie(fractions, labels=labels, autopct='%1.1f%%',
            colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'))
    plt.title(title)
    plt.savefig(filename, fmt='pdf')
开发者ID:ben-jones,项目名称:skyline-streaming,代码行数:31,代码来源:graphing.py

示例8: pie_graph

def pie_graph(conn, query, output, title='', lower=0, log=False):
	labels = []
	sizes = []

	res = query_db(conn, query)
	# Sort so the graph doesn't look like complete shit.
	res = sorted(res, key=lambda tup: tup[1])
	for row in res:
		if row[1] > lower:
			labels.append(row[0])
			if log:
				sizes.append(math.log(row[1]))
			else:
				sizes.append(row[1])
	# Normalize.
	norm = [float(i)/sum(sizes) for i in sizes]

	plt.pie(norm,
			labels=labels,
			shadow=True,
			startangle=90,
	)
	plt.figtext(.1,.03,'{}\n{} UTC'.format(site,generation_time))
	plt.axis('equal')
	plt.legend()
	plt.title(title)
	plt.savefig(output)
	plt.close()
开发者ID:Artogn,项目名称:i2spy,代码行数:28,代码来源:viewer.py

示例9: pieplot

def pieplot(data, total, min, stitle): #Create a pie plot... mmm, pie
	import matplotlib.pyplot as plt
	labels=[]
	sizes=[]
	other=0
	if total is None: #Calc total if not given
		total=0
		for cat in data:
			total+=cat[0]
	for cat in data: #Convert values to a percentage of total, separate smaller categories
		cat[0]=cat[0]/total*100
		if cat[0]>min:
			labels.append(cat[1])
			sizes.append(cat[0])
		else:
			other+=cat[0]
	if other>0.1: #Include the rest if it's significant
		sizes.append(other)
		labels.append("Other")
	# The slices will be ordered and plotted counter-clockwise.
	colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral']
	#explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice # But I don't wanna explode...
	plt.pie(sizes, labels=labels, #colors=colors,
			autopct='%1.1f%%', shadow=True, startangle=90)
	plt.axis('equal') # Set aspect ratio to be equal so that pie is drawn as a circle.
	plt.title(stitle)
	plt.show()
开发者ID:Nattgew,项目名称:X-Plane-Plugins,代码行数:27,代码来源:fseutils.py

示例10: plotResults

def plotResults(red_wins, black_wins, tie):

    # Adjusting the plot results to not show 0%`s
    def make_autopct(values):
        def my_autopct(pct):
            if pct == 0:
                return ""
            else:
                return '{p:.1f}% '.format(p=pct)

        return my_autopct

    # Setting up plot variables
    labels = ['Red Wins', 'Black Wins', 'Ties']
    sizes = [red_wins, black_wins, tie]
    colors = ['yellowgreen', 'gold', 'lightskyblue']
    explode = (0.1, 0, 0)

    plt.pie(sizes, colors=colors, explode=explode, labels=labels, autopct=make_autopct(sizes), shadow=True,
            startangle=70)
    plt.axis('equal')
    plt.tight_layout()
    plt.show()
    print "number of red wins ", red_wins
    print "number of black wins ", black_wins
    print "number of ties ", tie
开发者ID:ElchinValiyev,项目名称:GameAI,代码行数:26,代码来源:fourinarow.py

示例11: plot_single_piechart

    def plot_single_piechart(self, cluster_no, labels, pdf):
       cluster_label_dict = {}

       for label in labels:
           if label not in cluster_label_dict:
               cluster_label_dict[label] = 1
           else:
               cluster_label_dict[label] += 1
       distinct_labels = []
       label_counts = []
       colors = []
       cmap = self.get_cmap(30)
       i = 0
       for label,value in cluster_label_dict.iteritems():
           colors.append(cmap(i))
           distinct_labels.append(label)
           label_counts.append(value)
           i = i+1
       matplotlib.rcParams['font.size'] = 5

       plt.figure(figsize=(8,8))
       plt.pie(label_counts, explode=None, labels=distinct_labels, colors=colors,
       autopct='%1.1f%%', shadow=True, startangle=90)
       # Set aspect ratio to be equal so that pie is drawn as a circle.
       plt.axis('equal')
       plt.suptitle("Cluster no " + str(cluster_no) + "\nNumber of docs in cluster: " + str(len(labels)),fontsize=10)
       pdf.savefig()
       plt.close()
开发者ID:kaushlakers,项目名称:ReuterMinator,代码行数:28,代码来源:clusterer.py

示例12: drawing_pie

def drawing_pie(start_date, end_date):
    p_count=0
    n_count=0
    neu_count=0
    sentiment = get_sentiment_dates(start_date,end_date)
    for semt in sentiment[0].values():
        p_count+=semt
    for semt in sentiment[1].values():
        n_count+=semt
    for semt in sentiment[2].values():
        neu_count+=semt

    print p_count
    print n_count
    print neu_count
    labels = 'Positive','Negative','Neutral'
    sizes = [p_count,n_count,neu_count]
    colors = ['green', 'red', 'yellow']
    explode = (0, 0.1, 0) # only "explode" the 2nd slice

    plt.pie(sizes, explode=explode, labels=labels, colors=colors,
            autopct='%1.1f%%', shadow=True, startangle=90)
    plt.axis('equal')
    plt.title('Sentiment is Positive')

    plt.show()
    return
开发者ID:pramodbhn,项目名称:Programming-Data-Analytics,代码行数:27,代码来源:project1.py

示例13: makePieChart

def makePieChart(bigList):
    streetNameList = []
    bikeSpaceList = []
    x = 0
    ##bigList = readBikeData.GatherData('rows.json')
    for i in range(len(bigList)):
        streetName = bigList[i][10].lower()
        bikeSpaceInt = int(bigList[i][12])
        if streetName in streetNameList:
            ndx = streetNameList.index(streetName)
            bikeSpaceList[ndx] += bikeSpaceInt
        else:
            streetNameList.append(streetName)
            bikeSpaceList.append(bikeSpaceInt)
    bikeSpaceSum = sum(bikeSpaceList)

    ##I omited any area that was less then 1% of the total bike space to get a cleaner pie chart
    while x < len(bikeSpaceList):
        if(bikeSpaceList[x] < (bikeSpaceSum * .01) and x >= 0):
            del bikeSpaceList[x]
            del streetNameList[x]
            x-=1

        else:
            x+=1

    plt.axis("equal")
    plt.pie(bikeSpaceList, labels = streetNameList, autopct = "%1.1f%%", shadow = False)
    plt.title("Bike Space to Street Name Distribution")
    plt.show()
开发者ID:Dirichi,项目名称:BikeParkingSF,代码行数:30,代码来源:pieChart.py

示例14: pieplot

    def pieplot(self, variable):
        """ Plot pie plot for gender or usertype in certain period """
        variable_type = self.data[variable].unique()
        variable_size = []
        if variable == 'gender':
            for i in np.sort(variable_type):
                variable_size.append(round((sum(self.data[variable] == i) / self.data.shape[0] * 100), 2))    # calculate distirbution
            # Gender (Zero=unknown; 1=male; 2=female)
            labels = 'Unknown', 'Male', 'Female'
            sizes = variable_size
            colors = ['lightyellow','lightskyblue', 'lightcoral']
            explode = (0, 0.1, 0.1)  # "explode" the distribution of male and female

            plt.pie(sizes, explode=explode, labels=labels, colors=colors,
                    autopct='%1.1f%%', shadow=True, startangle=90)
            # Set aspect ratio to be equal so that pie is drawn as a circle.
            plt.axis('equal')
            plt.title('Gender Distribution in {}-{}'.format(self.year, self.month), fontsize = 12,y = 1,x=0.12,bbox={'facecolor':'0.8', 'pad':5})
            plt.show()

        elif variable == 'usertype':
            # usertype (Zero=Customer, 1=Subscriber)
            for i in range(2): # change to 0, 1
                variable_size.append(round((sum(self.data[variable] == i) / self.data.shape[0] * 100), 2))    # calculate distribution
            labels = 'Subscriber', 'Customer'
            sizes = variable_size
            colors = ['lightcoral','lightskyblue']
            explode = (0, 0.1)  # only "explode" the subscriber

            plt.pie(sizes, explode=explode, labels=labels, colors=colors,
                    autopct='%1.1f%%', shadow=True, startangle=90)
            # Set aspect ratio to be equal so that pie is drawn as a circle.
            plt.axis('equal')
            plt.title('User Type Distribution in {}-{}'.format(self.year, self.month), fontsize = 12,y = 1,x=0.12,bbox={'facecolor':'0.8', 'pad':5})
            plt.show()
开发者ID:clickpn,项目名称:final_proj,代码行数:35,代码来源:plottingTool.py

示例15: make_chart_pie_chart

def make_chart_pie_chart():

    plt.pie([0.95, 0.05], labels=["Uses pie charts", "Knows better"])

    # make sure pie is a circle and not an oval
    plt.axis("equal")
    plt.show()
开发者ID:1800Blarbo,项目名称:data-science-from-scratch,代码行数:7,代码来源:visualizing_data.py


注:本文中的matplotlib.pyplot.pie函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。