本文整理汇总了Python中matplotlib.pyplot.pcolormesh函数的典型用法代码示例。如果您正苦于以下问题:Python pcolormesh函数的具体用法?Python pcolormesh怎么用?Python pcolormesh使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了pcolormesh函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_2d
def plot_2d(x, y, mean, variance, ei, slice_at, v1_name, v2_name):
h_fig = pplt.figure(figsize=(20, 8), dpi=100)
pplt.subplot(131)
h_mean = pplt.pcolormesh(x, y,
mean.reshape(x.shape[0], y.shape[0]))
pplt.colorbar(h_mean)
slice_at_list = np.squeeze(np.asarray(slice_at)).tolist()
slice_at_string = str(["%.2f" % member for member in slice_at_list])
pplt.xlabel(r'$' + v1_name + '$')
pplt.ylabel(r'$' + v2_name + '$')
pplt.title(r'Mean, slice along $( ' + v1_name + ',' + v2_name + ')$ at ' +
slice_at_string)
pplt.subplot(132)
h_var = pplt.pcolormesh(x, y, 2*np.sqrt(variance.reshape(x.shape[0],
y.shape[0])))
pplt.colorbar(h_var)
pplt.xlabel(r'$' + v1_name + '$')
pplt.ylabel(r'$' + v2_name + '$')
pplt.title(r'2*Stdev, slice along $( ' + v1_name + ',' + v2_name + ')$' )
pplt.subplot(133)
h_ei = pplt.pcolormesh(x, y, ei.reshape(x.shape[0], y.shape[0]))
pplt.colorbar(h_var)
pplt.xlabel(r'$' + v1_name + '$')
pplt.ylabel(r'$' + v2_name + '$')
pplt.title(r'EI, slice along $( ' + v1_name + ',' + v2_name + ')$')
pplt.draw()
return (h_fig, h_mean, h_var, h_ei)
示例2: Pcolor
def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options):
"""Makes a pseudocolor plot.
xs:
ys:
zs:
pcolor: boolean, whether to make a pseudocolor plot
contour: boolean, whether to make a contour plot
options: keyword args passed to pyplot.pcolor and/or pyplot.contour
"""
Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)
X, Y = np.meshgrid(xs, ys)
Z = zs
x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
axes = pyplot.gca()
axes.xaxis.set_major_formatter(x_formatter)
if pcolor:
pyplot.pcolormesh(X, Y, Z, **options)
if contour:
cs = pyplot.contour(X, Y, Z, **options)
pyplot.clabel(cs, inline=1, fontsize=10)
示例3: plt_data
def plt_data():
t = [[0,1], [1,0], [1, 1], [0, 0]]
t2 = [1, 1, 1, 0]
X = np.array(t)
Y = np.array(t2)
h = .02 # step size in the mesh
logreg = linear_model.LogisticRegression(C=1e5)
# we create an instance of Neighbours Classifier and fit the data.
logreg.fit(X, Y)
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(4, 3))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()
示例4: test_unimodality_of_GEV
def test_unimodality_of_GEV(self):
x0 = 1500
mu = 1000
data = np.array([x0])
ksi = np.arange(-2, 2, 0.01)
sigma = np.arange(10, 8000, 10)
n_ksi = len(ksi)
n_sigma = len(sigma)
z = np.zeros((n_ksi, n_sigma))
for i, the_ksi in enumerate(ksi):
for j, the_sigma in enumerate(sigma):
z[i, j] = gevfit.objective_function_stationary_high([the_sigma, mu, the_ksi], data)
sigma, ksi = np.meshgrid(sigma, ksi)
z = np.ma.masked_where(z == gevfit.BIG_NUM, z)
z = np.ma.masked_where(z > 9, z)
plt.figure()
plt.pcolormesh(ksi, sigma, z)
plt.colorbar()
plt.xlabel('$\\xi$')
plt.ylabel('$\\sigma$')
plt.title('$\\mu = %.1f, x = %.1f$' % (mu, x0))
plt.show()
pass
示例5: prettyPicture
def prettyPicture(clf, X_test, y_test):
x_min = 0.0;
x_max = 1.0
y_min = 0.0;
y_max = 1.0
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
h = .01 # step size in the mesh
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.pcolormesh(xx, yy, Z)
# Plot also the test points
grade_sig = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii] == 0]
bumpy_sig = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii] == 0]
grade_bkg = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii] == 1]
bumpy_bkg = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii] == 1]
plt.scatter(grade_sig, bumpy_sig, color="b", label="fast")
plt.scatter(grade_bkg, bumpy_bkg, color="r", label="slow")
plt.legend()
plt.xlabel("bumpiness")
plt.ylabel("grade")
plt.savefig("test.png")
示例6: visualize
def visualize(self, output_file, width=2, show_charts=False):
X = self.X
# Create a grid of points
x_min, x_max = min(X[:, 0] - width), max(X[:, 0] + width)
y_min, y_max = min(X[:, 1] - width), max(X[:, 1] + width)
xx,yy = np.meshgrid(np.arange(x_min, x_max, .05), np.arange(y_min,
y_max, .05))
# Flatten the grid so the values match spec for self.predict
xx_flat = xx.flatten()
yy_flat = yy.flatten()
X_topredict = np.vstack((xx_flat,yy_flat)).T
# Get the class predictions
Y_hat = self.predict(X_topredict)
Y_hat = Y_hat.reshape((xx.shape[0], xx.shape[1]))
cMap = c.ListedColormap(['r','b','g'])
# Visualize them.
plt.figure()
plt.pcolormesh(xx,yy,Y_hat, cmap=cMap)
plt.scatter(X[:, 0], X[:, 1], c=self.C, cmap=cMap)
plt.savefig(output_file)
if show_charts:
plt.show()
示例7: plotmaptime
def plotmaptime():
pcolormesh(yoko, time*1e6, absolute(Magcom))
title("Reflection vs flux \n and time (1 us pulse) at 4.46 GHz")
xlabel("Flux (V)")
ylabel("Time (us)")
#ylim(0, 1.5)
colorbar()
示例8: plot_spectrogram
def plot_spectrogram(raw_data, nfft, fs, channel_bottom, print_frequency_graph):
data_shape = raw_data.shape
print("Generating spectrogram...")
plt_num = 1
plt.clf()
plt.figure(1)
channel_data = []
for i in range(0, data_shape[1]):
plt.subplot(8, 2, plt_num)
f, t, Sxx = signal.spectrogram(x=raw_data[:, i], nfft=nfft, fs=fs, noverlap=127, nperseg=128,
scaling='density') # returns PSD power per Hz
plt.pcolormesh(t, f, Sxx)
plt.xlabel('Time (sec)')
plt.ylabel('Frequency (Hz)')
plt.title('Channel %s' % (i + channel_bottom))
plt_num += 1
channel_data.append([f, t, Sxx])
print("\tChannel %d spectrogram generated" % i)
if print_frequency_graph:
plt.show()
return channel_data
示例9: test_pcolormesh_global_with_wrap3
def test_pcolormesh_global_with_wrap3():
nx, ny = 33, 17
xbnds = np.linspace(-1.875, 358.125, nx, endpoint=True)
ybnds = np.linspace(91.25, -91.25, ny, endpoint=True)
xbnds, ybnds = np.meshgrid(xbnds, ybnds)
data = np.exp(np.sin(np.deg2rad(xbnds)) + np.cos(np.deg2rad(ybnds)))
# this step is not necessary, but makes the plot even harder to do (i.e.
# it really puts cartopy through its paces)
ybnds = np.append(ybnds, ybnds[:, 1:2], axis=1)
xbnds = np.append(xbnds, xbnds[:, 1:2] + 360, axis=1)
data = np.ma.concatenate([data, data[:, 0:1]], axis=1)
data = data[:-1, :-1]
data = np.ma.masked_greater(data, 2.6)
ax = plt.subplot(211, projection=ccrs.PlateCarree(-45))
c = plt.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree())
assert c._wrapped_collection_fix is not None, \
'No pcolormesh wrapping was done when it should have been.'
ax.coastlines()
ax.set_global() # make sure everything is visible
ax = plt.subplot(212, projection=ccrs.PlateCarree(-1.87499952))
plt.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree())
ax.coastlines()
ax.set_global() # make sure everything is visible
示例10: Picture
def Picture(clf, X_test, y_test):
x_min = 200.0
x_max = 1000.0
y_min = 600.0
y_max = 2500.0
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
h = 1 # step size in the mesh
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.pcolormesh(xx, yy, Z, cmap=pl.cm.seismic)
# Plot also the test points
x1 = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii] == 0]
y1 = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii] == 0]
x2 = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii] == 1]
y2 = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii] == 1]
x3 = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii] == 2]
y3 = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii] == 2]
plt.scatter(x1, y1, color="b", label="class1")
plt.scatter(x2, y2, color="r", label="class2")
plt.scatter(x3, y3, color="g", label="class3")
plt.legend()
plt.xlabel("x")
plt.ylabel("y")
plt.savefig("testrf.png")
示例11: train_Quasi_linear_SVM
def train_Quasi_linear_SVM():
from sklearn import svm
clf = svm.SVC(kernel=get_KernelMatrix)
X_train = np.r_[X1,X2]
Y_train = np.r_[Y1,Y2]
scatter(X[:,0],X[:,1],c='g')
clf.fit(X_train, Y_train)
y_pred = clf.predict(X_test)
#scatter(X_test, y_pred)
clf = svm.SVC(kernel=get_KernelMatrix)
clf.fit(X, y)
clf.predict(X_test1)
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
h = 0.05
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
# Plot also the training points
plt.scatter(X_train[:, 0], X_train[:, 1], c=Y_train)
plt.title('2-Class classification using Support Vector Machine with quasi-linear kernel')
plt.axis('tight')
plt.legend([Y_train[0], Y_train[-1]], ['negtive sample', 'postive sample'])
plt.show()
示例12: plotter
def plotter(filename, xmin=0, xmax=300, Nx=2000,
ymin=0, ymax=1, Ny=2000, sigma_x=3, sigma_y=0.01):
root = '/home/cyneo/Work/Scans/Processed Data/Extracted CSV/'
file1 = os.path.abspath(root + filename + '.csv')
nx = linspace(xmin, xmax, Nx)
ny = linspace(ymin, ymax, Ny)
x, y = meshgrid(nx, ny)
mastermesh = []
with open(file1, 'r', encoding='utf8') as filein:
file_reader = csv.reader(filein)
next(file_reader)
for word, frequency, inhubness, outhubness in file_reader:
# want to feed the values into the center points
if mastermesh == []:
mastermesh = dgaussian(x, y, float(frequency),
float(outhubness), sigma_x, sigma_y)
else:
mastermesh += dgaussian(x, y, float(frequency),
float(outhubness), sigma_x, sigma_y)
for x in range(len(mastermesh)):
for y in range(len(mastermesh[x])):
mastermesh[x, y] = np.log(mastermesh[x, y]+1)
x, y = meshgrid(nx, ny)
plt.pcolormesh(x, y, mastermesh)
plt.show()
outfile = os.path.abspath(root + filename + ' Array')
np.save(outfile, mastermesh)
示例13: plot_basins
def plot_basins(f, Df, roots, xmin, xmax, ymin, ymax, numpoints=100, iters=15, colormap='brg'):
'''Plot the basins of attraction of f.
INPUTS:
f - A function handle. Should represent a function
from C to C.
Df - A function handle. Should be the derivative of f.
roots - An array of the zeros of f.
xmin, xmax, ymin, ymax - Scalars that define the domain
for the plot.
numpoints - A scalar that determines the resolution of
the plot. Defaults to 100.
iters - Number of times to iterate Newton's method.
Defaults to 15.
colormap - A colormap to use in the plot. Defaults to 'brg'.
'''
xreal = np.linspace(xmin, xmax, numpoints)
ximag = np.linspace(ymin, ymax, numpoints)
Xreal, Ximag = np.meshgrid(xreal, ximag)
xold = Xreal+1j*Ximag
n = 0
while n <= iters:
xnew = xold - f(xold)/Df(xold)
xold = xnew
n += 1
converged_to = np.empty_like(xnew)
for i in xrange(xnew.shape[0]):
for j in xrange(xnew.shape[1]):
root = np.abs(roots-xnew[i,j]).argmin()
converged_to[i,j] = root
plt.pcolormesh(Xreal, Ximag, converged_to, cmap=colormap)
示例14: pcolorRandom
def pcolorRandom():
"Makes a pcolormesh plot of randomly generated data pts."
# make up some randomly distributed data
npts = 100
x = uniform(-3, 3, npts)
y = uniform(-3, 3, npts)
z = x * N.exp(-x ** 2 - y ** 2)
# define grid.
xi = N.arange(-3.1, 3.1, 0.05)
yi = N.arange(-3.1, 3.1, 0.05)
# grid the data.
zi = griddata(x, y, z, xi, yi)
# contour the gridded data, plotting dots at the randomly spaced data points.
plt.pcolormesh(xi, yi, zi)
#CS = plt.contour(xi,yi,zi,15,linewidths=0.5,colors='k')
#CS = plt.contourf(xi,yi,zi,15,cmap=plt.cm.jet)
plt.colorbar() # draw colorbar
# plot data points.
plt.scatter(x, y, marker='o', c='b', s=5)
plt.xlim(-3, 3)
plt.ylim(-3, 3)
plt.title('griddata test (%d points)' % npts)
plt.show()
示例15: plot_eta
def plot_eta(pT_lower_cut):
properties_reco = [parse_file("/home/aashish/pythia_reco.dat", pT_lower_cut=pT_lower_cut), parse_file("/home/aashish/herwig_reco.dat", pT_lower_cut=pT_lower_cut), parse_file("/home/aashish/sherpa_reco.dat", pT_lower_cut=pT_lower_cut)]
properties_truth = [parse_file("/home/aashish/pythia_truth.dat", pT_lower_cut=pT_lower_cut), parse_file("/home/aashish/herwig_truth.dat", pT_lower_cut=pT_lower_cut), parse_file("/home/aashish/sherpa_truth.dat", pT_lower_cut=pT_lower_cut)]
labels = ["pythia", "herwig", "sherpa"]
for prop_reco, prop_truth, label in zip(properties_reco, properties_truth, labels):
x = prop_truth['hardest_eta']
y = prop_reco['hardest_eta']
H, xedges, yedges = np.histogram2d(x, y, bins=200, normed=1 )
H = np.rot90(H)
H = np.flipud(H)
Hmasked = np.ma.masked_where(H == 0, H) # Mask pixels with a value of zero
plt.pcolormesh(xedges,yedges, Hmasked)
cbar = plt.colorbar()
cbar.ax.set_ylabel('Counts')
plt.xlim(0, 3)
plt.ylim(0, 3)
plt.xlabel('Truth $\eta$', fontsize=50, labelpad=75)
plt.ylabel('Reco $\eta$', fontsize=50, labelpad=75)
plt.gcf().set_size_inches(30, 30, forward=1)
plt.gcf().set_snap(True)
plt.savefig("plots/With MC/2D/eta_" + label + ".pdf")
plt.clf()