本文整理汇总了Python中matplotlib.pyplot.matshow函数的典型用法代码示例。如果您正苦于以下问题:Python matshow函数的具体用法?Python matshow怎么用?Python matshow使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了matshow函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: classifykNN
def classifykNN():
print 'Classify kNN'
target_names = ['unacc', 'acc','good','v-good']
df = pd.read_csv("data/cars-cleaned.txt", delimiter=",");
print df
print df.dtypes
df_y = df['accept']
df_x = df.ix[:,:-1]
#print df_y
#print df_x
train_y, test_y, train_x, test_x = train_test_split(df_y, df_x, test_size = 0.3, random_state=33)
clf = KNeighborsClassifier(n_neighbors=3)
tstart=time.time()
model = clf.fit(train_x, train_y)
print "training time:", round(time.time()-tstart, 3), "seconds"
y_predictions = model.predict(test_x)
print "Accuracy : " , model.score(test_x, test_y)
#print y_predictions
c_matrix = confusion_matrix(test_y,y_predictions)
print "confusion matrix:"
print c_matrix
print "Nearest Neighbors probabilities"
print model.predict_proba(test_x)
plt.matshow(c_matrix)
plt.colorbar();
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
plt.ylabel('true label')
plt.xlabel('predicted label')
plt.show()
示例2: classify
def classify():
print 'Classify SVM'
target_names = ['unacc', 'acc','good','v-good']
df = pd.read_csv("data/cars-cleaned.txt", delimiter=",");
print df
print df.dtypes
df_y = df['accept']
df_x = df.ix[:,:-1]
train_y, test_y, train_x, test_x = train_test_split(df_y, df_x, test_size = 0.3, random_state=33)
clf = svm.SVC(kernel="linear", C=0.01)
tstart=time.time()
model = clf.fit(train_x, train_y)
print "training time:", round(time.time()-tstart, 3), "seconds"
y_predictions = model.predict(test_x)
print "Accuracy : " , model.score(test_x, test_y)
c_matrix = confusion_matrix(test_y,y_predictions)
print "confusion matrix:"
print c_matrix
plt.matshow(c_matrix)
plt.colorbar();
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
plt.ylabel('true label')
plt.xlabel('predicted label')
plt.show()
示例3: export_pdf
def export_pdf(data, output, gradient=True):
"""Exports the data as a heatmap to the file specified by output (.pdf). The gradient
marker specifies if the color in the heatmap should be a gradient that shows the
fold change score, or as binary red/white colors with a cutoff for maximum fold-change
score to be considered a hit.
"""
bacteria = sorted(data.values()[0].keys())
matrix = np.zeros((len(data), len(bacteria)))
rows = sorted(
data.keys(),
key=lambda w: np.sum([d ** 3 for d in data[w].values()]) / (len([d for d in data[w].values() if d < 0.3]) + 1),
)
for wind, well in enumerate(rows):
for bind, bacterium in enumerate(bacteria):
if gradient:
matrix[(wind, bind)] = data[well][bacterium]
else:
matrix[(wind, bind)] = 0 if data[well][bacterium] < 0.3 else 0.5
plt.matshow(matrix, cmap=plt.get_cmap("RdYlGn"), vmin=0, vmax=1)
plt.xticks(range(len(bacteria)), bacteria, rotation=90)
plt.yticks(range(len(rows)), rows)
ax = plt.gca()
for posi in ax.spines:
ax.spines[posi].set_color("none")
ax.tick_params(labelcolor="k", top="off", bottom="off", left="off", right="off")
fig = plt.gcf()
fig.set_size_inches(10, 100)
plt.savefig(output + ".pdf", bbox_inches="tight", dpi=200)
plt.close()
示例4: plot_confusion_matrix
def plot_confusion_matrix(cm):
pl.matshow(cm)
pl.title('Confusion matrix')
pl.colorbar()
pl.ylabel('True label')
pl.xlabel('Predicted label')
pl.show()
示例5: generate_single_funnel_test_data
def generate_single_funnel_test_data( excitation_angles, emission_angles, \
md_ex=0, md_fu=1, \
phase_ex=0, phase_fu=0, \
gr=1.0, et=1.0 ):
ex, em = np.meshgrid( excitation_angles, emission_angles )
alpha = 0.5 * np.arccos( .5*(((gr+2)*md_ex)-gr) )
ph_ii_minus = phase_ex - alpha
ph_ii_plus = phase_ex + alpha
print ph_ii_minus
print ph_ii_plus
Fnoet = np.cos( ex-ph_ii_minus )**2 * np.cos( em-ph_ii_minus )**2
Fnoet += gr*np.cos( ex-phase_ex )**2 * np.cos( em-phase_ex )**2
Fnoet += np.cos( ex-ph_ii_plus )**2 * np.cos( em-ph_ii_plus )**2
Fnoet /= (2+gr)
Fet = .25 * (1+md_ex*np.cos(2*(ex-phase_ex))) \
* (1+md_fu*np.cos(2*(em-phase_fu-phase_ex)))
Fem = et*Fet + (1-et)*Fnoet
import matplotlib.pyplot as plt
plt.interactive(True)
plt.matshow( Fem, origin='bottom' )
plt.colorbar()
示例6: test_initialize_at_truth
def test_initialize_at_truth():
global alpha, beta, num_topics, num_vocab, document_lengths, \
doc_topic, topic_word, docs, model
alpha = 5.
beta = 20.
num_topics = 20
num_vocab = 1000
document_lengths = [100]*1000
doc_topic, topic_word, docs = generate_synthetic(alpha,beta,
num_topics,num_vocab,document_lengths)
model = lda.CollapsedSampler(alpha,beta,num_topics,num_vocab)
model.add_documents_spmat(docs)
# initialize at truth
model.document_topic_counts = (model.document_topic_counts.sum(1)[:,None] * doc_topic).round()
model.topic_word_counts = (model.topic_word_counts.sum(1)[:,None] * topic_word).round()
model.resample(1000)
plt.matshow(topic_word[:20,:20])
plt.title('true topic_word on first 20 words')
plt.matshow(model.topic_word_counts[:20,:20])
plt.title('topic_word counts on first 20 words')
示例7: TestSVM
def TestSVM(features, labels, silence=True):
X_train = features[0:1600,:]
Y_train = labels[0:1600]
X_test = features[1600:,:]
Y_test = labels[1600:]
clf = SVM.SVC()
clf.fit(X_train, Y_train)
predictions = clf.predict(X_test)
error = np.mean(abs(predictions-Y_test))
cm = confusion_matrix(Y_test, predictions)
cm_sum = np.sum(cm, axis=1)
cm_mean = cm.T / cm_sum
cm_mean = cm_mean.T
if silence==False:
plt.matshow(cm_mean)
plt.title('Confusion matrix')
plt.colorbar()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
return error, cm_mean
示例8: compare_autoencoder_outputs
def compare_autoencoder_outputs(imgs, model, indices=[0], img_dim=(28, 28)):
pred = model.predict(imgs)
for i in indices:
tup = (imgs[i].reshape(img_dim), pred[i].reshape(img_dim))
plt.matshow(tup[0])
plt.matshow(tup[1])
plt.show()
示例9: makeConfusionMatrix
def makeConfusionMatrix(n=100):
# import some data to play with
trainingdata = sio.loadmat('train.mat')
X = np.swapaxes(trainingdata['train_images'].reshape(784,60000), 0, 1)
y = np.array(trainingdata['train_labels']).transpose()[0]
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=n/60000.0)
# Run classifier
classifier = svm.SVC(kernel='linear')
y_pred = classifier.fit(X_train, y_train).predict(X_test)
# Compute confusion matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
# Show confusion matrix in a separate window
plt.matshow(cm)
plt.title('Confusion matrix')
plt.colorbar()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.savefig('matrix'+str(n))
plt.show()
return
示例10: verify_gradient
def verify_gradient(f, x, eps=1e-4, tol=1e-6, **kwargs):
"""
Compares the numerical and analytical gradients.
"""
# print
fval, fgrad = f(x=x, **kwargs)
# print fval, fgrad.shape
# bbbbbbbb
ngrad = numerical_gradient(f=f, x=x, eps=eps, tol=tol, **kwargs)
fgradnorm = numpy.sqrt(numpy.sum(fgrad**2))
ngradnorm = numpy.sqrt(numpy.sum(ngrad**2))
diffnorm = numpy.sqrt(numpy.sum((fgrad-ngrad)**2))
# print fval.shape
plt.matshow(fgrad)
plt.show()
plt.matshow(ngrad)
plt.show()
if fgradnorm > 0 or ngradnorm > 0:
norm = numpy.maximum(fgradnorm, ngradnorm)
if not (diffnorm < tol or diffnorm/norm < tol):
raise Exception("Numerical and analytical gradients "
"are different: %s != %s!" % (ngrad, fgrad))
else:
if not (diffnorm < tol):
raise Exception("Numerical and analytical gradients "
"are different: %s != %s!" % (ngrad, fgrad))
return True
示例11: coloc
def coloc(dataR, dataG):
#returns heatmap for colocalization based on the angle in the red- green value plot
#regions with low intensity are filterd out
if dataR.shape != dataG.shape:
print('images must have same shape')
return 0
tol=0.02
dataB = np.zeros(dataR.shape)
dataB[...,0]=np.tan(dataR[...,2]/dataG[...,1])
dataB[...,0]=np.where((dataB[...,0]-np.pi/2.)**2>tol,0,dataB[...,0])
maskG=np.where(dataG[...,1]<np.mean(dataG[...,1]),0,dataG[...,1])
maskR=np.where(dataR[...,2]<np.mean(dataR[...,2]),0,dataR[...,2])
from matplotlib import pyplot
#pyplot.matshow(maskR)
#pyplot.show()
#pyplot.matshow(maskG)
#pyplot.show()
dataB[...,0]=dataB[...,0]*maskG*maskR
dataB=dataB*255/np.max(dataB)
dataB = np.array(dataB, dtype=np.uint8)
print(np.mean(dataB[...,0]))
plot.matshow(dataB[...,0])
plot.show()
return dataB
示例12: test
def test(training_file, testing_file):
X,y = train.process_training_examples(training_file)
X_test, y_test = train.process_training_examples(testing_file)
lin_svm = train.train_linear_svm(X, y)
linear_svm_accuracy = test_with(lin_svm, X_test, y_test)
print("LinearSVM has classification accuracy of {}%".format(100 * linear_svm_accuracy))
rbf_svm = train.train_rbf_svm(X, y)
rbf_svm_accuracy = test_with(rbf_svm, X_test, y_test)
print("RBF-SVM has classification accuracy of {}%".format(100 * rbf_svm_accuracy))
nbc = train.train_naive_bayes(X, y)
nb_accuracy = test_with(nbc, X_test, y_test)
print("Multinomial Naive Bayes has classification accuracy of {}%".format(100 * nb_accuracy))
lda = train.train_lda(X, y)
lda_accuracy = test_with(lda, X_test, y_test)
print("LDA has classification accuracy of {}%".format(100 * lda_accuracy))
#Print SVM confusion matrix
y_pred = lin_svm.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
plt.matshow(cm)
plt.title('Confusion matrix for SVM Classification of File Fragment Types')
#plt.colorbar()
plt.ylabel('True File Type')
plt.xlabel('Predicted File Type')
plt.show()
示例13: show_confusion_matrix
def show_confusion_matrix(X, y):
"""docstring for show_confusion_matrix"""
print "show matrix..."
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=.1)
print "running classifier...."
# Run classifier
classifier = svm.SVC()
y_pred = classifier.fit(X_train, y_train).predict(X_test)
print "compute confusion matrix..."
# Compute confusion matrix
cm = confusion_matrix(y_test, y_pred)
cm_sum = np.sum(cm, axis=1).T
cm_ratio = cm / cm_sum.astype(float)[:, np.newaxis]
print(cm_ratio)
print cm
print cm_sum
print "plot matrix..."
# Show confusion matrix in a separate window
plt.matshow(cm_ratio)
plt.title('Confusion matrix')
plt.colorbar()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
示例14: calc_field_OneDistance
def calc_field_OneDistance(self, distance, n_z_points, temp_field=None,
plot_matrix=False):
if temp_field is not None:
old_field = [self.do_static, self.do_induction, self.do_radiation]
self.set_fields(temp_field)
Z_array, dz = np.linspace(0, self.channel_height, n_z_points,
retstep=True)
min_t = self.min_starttime + distance/C
max_t = self.max_endtime + np.sqrt(distance*distance +
self.channel_height*self.channel_height)/C
n_t_points = int((max_t-min_t)/self.dt)+1
T_array = min_t + np.arange(n_t_points)*self.dt
field_matrix=np.zeros((n_t_points,n_z_points))
for z_i in range(n_z_points):
self.integrand(Z_array[z_i], distance, min_t, field_matrix[:,z_i])
Es=-simps(field_matrix, dx=dz)/two_pi_e0
if temp_field!=None:
self.do_static, self.do_induction, self.do_radiation=old_field
if plot_matrix:
plt.matshow(-field_matrix/two_pi_e0)
plt.colorbar()
plt.show()
return T_array, Es
示例15: marg_mult
def marg_mult(model, db, samples, burn=0, filename=None, n5=False):
"""
generates histogram for marginal distribution of posterior multiplicities.
:param model: TorsionFitModel
:param db: pymc.database for model
:param samples: length of trace
:param burn: int. number of steps to skip
:param filename: filename for plot to save
"""
if n5:
multiplicities = tuple(range(1, 7))
else:
multiplicities = (1, 2, 3, 4, 6)
mult_bitstring = []
for i in model.pymc_parameters.keys():
if i.split('_')[-1] == 'bitstring':
mult_bitstring.append(i)
if n5:
histogram = np.zeros((len(mult_bitstring), samples, 5))
else:
histogram = np.zeros((len(mult_bitstring), samples, 5))
for m, torsion in enumerate(mult_bitstring):
for i, j in enumerate(db.trace('%s' % torsion)[burn:]):
for k, l in enumerate(multiplicities):
if 2**(l-1) & int(j):
histogram[m][i][k] = 1
plt.matshow(histogram.sum(1), cmap='Blues', extent=[0, 5, 0, 20]), plt.colorbar()
plt.yticks([])
plt.xlabel('multiplicity term')
plt.ylabel('torsion')
if filename:
plt.savefig(filename)