当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.margins函数代码示例

本文整理汇总了Python中matplotlib.pyplot.margins函数的典型用法代码示例。如果您正苦于以下问题:Python margins函数的具体用法?Python margins怎么用?Python margins使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了margins函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_teh

def plot_teh(damage,title,subplot):
    plt.subplot(subplot)
    h5 = read_csv(5,damage)
    h4 = read_csv(4,damage)
    h3 = read_csv(3,damage)
    h2 = read_csv(2,damage)
    h1 = read_csv(1,damage)
  
    xlist = [z for z in range(len(h5))]
    ph5 = plt.plot(xlist,h5,'-o',label='h5',marker = 'v',markersize=8,color='blue')
    ph4 = plt.plot(xlist,h4,'-o',label='h4',marker = 'o',markersize=8,color='green')
    ph3 = plt.plot(xlist,h3,'-o',label='h3',marker = 'D',markersize=8,color='orange')
    ph2 = plt.plot(xlist,h2,'-o',label='h2',marker = '*',markersize=8,color='red')
    ph1 = plt.plot(xlist,h1,'-o',label='h1',marker = 's',markersize=8,color='black')

    #plt.legend(loc='upper left', handlelength=5, borderpad=1.2, labelspacing=1.2)
    #plt.legend()
    plt.legend(loc='upper right', fontsize = 'xx-large')
    plt.tick_params(axis='both',which='major', labelsize='large')
    plt.title(title,size = 'xx-large',weight='bold')
    plt.xlabel('Rank',size='xx-large',weight='bold')
    plt.ylabel('Transfer Entropy',size='xx-large',weight='bold')
    sns.axes_style("darkgrid", {"axes.facecolor": ".9"})
    plt.ylim(ymin=0.0,ymax = 1.0)
    plt.xlim(xmin=0.0,xmax = len(h5))
    plt.margins(0.2)
    plt.tight_layout(pad=2.5)

    return
开发者ID:SES591,项目名称:DNA_DMG_Network,代码行数:29,代码来源:plotte_scaled2.py

示例2: exercise_2a

def exercise_2a():
    X, y = make_blobs(n_samples=1000,centers=50, n_features=2, random_state=0)
    # plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
    # plt.show()
    kf = KFold(1000, n_folds=10, shuffle=False, random_state=None)
    accuracy_lst = np.zeros([49, 2], dtype=float)
    accuracy_current = np.zeros(10, dtype=float)
    for k in range(1,50):
        iterator = 0
        clf = KNeighborsClassifier(n_neighbors=k)
        for train_index, test_index in kf:
            X_train, X_test = X[train_index], X[test_index]
            y_train, y_test = y[train_index], y[test_index]

            clf.fit(X_train, y_train)
            accuracy_current[iterator] = (1. - clf.score(X_test,y_test))
            iterator+=1
        accuracy_lst[k-1, 0] = accuracy_current.mean()
        # accuracy_lst[k-1, 1] = accuracy_current.std() #confidence interval 95%
    x = np.arange(1,50, dtype=int)
    plt.style.use('ggplot')
    plt.plot(x, accuracy_lst[:, 0], '#009999', marker='o')
    # plt.errorbar(x, accuracy_lst[:, 0], accuracy_lst[:, 1], linestyle='None', marker='^')
    plt.xticks(x, x)
    plt.margins(0.02)
    plt.xlabel('K values')
    plt.ylabel('Missclasification Error')
    plt.show()
开发者ID:palindrome6,项目名称:Data-Mining---Assignment-2,代码行数:28,代码来源:model_selection.py

示例3: gen_graph

def gen_graph(kind, xvals, yvals, xlabel, ylabel):
    if len(xvals) > 10:
        xvals = xvals[:10]
    if len(yvals) > 10:
        yvals = yvals[:10]

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ind = np.arange(len(yvals))

    if kind == 'line':
        ax.plot(ind, yvals[::-1])
    elif kind == 'bar':
    	ax.bar(ind, yvals[::-1])

    plt.xticks(ind + .3 / 2, xvals[::-1])
    plt.xlabel(xlabel, labelpad=20)
    plt.ylabel(ylabel)
    plt.margins(xmargin=0.05)
    plt.xticks(range(0, len(xvals)))
    plt.subplots_adjust(bottom=0.3, right=0.9)
    ax.set_xticklabels(xvals[::-1], rotation=45)
    io = StringIO()
    fig.savefig(io, format='png')
    graph = io.getvalue().encode('base64')
    return graph
开发者ID:bpospichil,项目名称:gerredes,代码行数:26,代码来源:manager.py

示例4: calculate_write_data_rate

def calculate_write_data_rate(loop_time):
	f = open('create_rand_data.txt', 'a+');
	block_size_list = [];
	i = 128;
	while i < (3*1024*1024):
		block_size_list.append(i);
		i = i*2;
	fastest_block_index_count = len(block_size_list)*[0];
	for j in range(loop_time):
		#block_size_list = [100, 1000, 4000, 10000, 20000, 40000, 60000, 80000, 100000, 150000, 200000, 500000, 1000000, 2000000, 3000000]
		data_rates = []
		max_rate = 0;
		max_block_index = 0;
		file_size = 30*1024*1024;    #30mb
		for i in range(len(block_size_list)):
			fname = "test" + str(i+1) + ".txt";
			out = subprocess.check_output(["./create_random_file", fname, str(file_size), str(block_size_list[i])]);
			data = out.split(":");
			time_used = int(data[1].strip()[:-1]);
			data_rate = (file_size / time_used);
			data_rates.append(data_rate);
			if data_rate > max_rate:
				max_rate = data_rate;
				max_block_index = i;
			#print('writing' + str(i+1));
		f.write('Block size:\n');
		f.write(str(block_size_list)+'\n');
		f.write('Data rate:\n');
		f.write(str(data_rates)+'\n');
		max_block_size = block_size_list[max_block_index];
		single_info = "max rate: "+str(max_rate)+", "+"optimal_block_size: "+str(max_block_size)+"\n\n";
		f.write(single_info);
		
		plt.figure(j+1);
		plt.plot(block_size_list, data_rates, linestyle='-', marker='o', color='b',linewidth=2.0);
		plt.ylabel("data rate (b/ms)");
		plt.xlabel("block size (b)");
		label_text = "max:" + str(max_rate) + " " + "block:" + str(max_block_size);
		plt.annotate(label_text, xy=(max_block_size, max_rate), xytext=(max_block_size+20000, max_rate+20000), arrowprops=dict(facecolor='black', shrink=0.05));
		plt.ylim(0,200000);
		plt.xscale('log');
		plt.xticks(block_size_list);
		plt.axes().get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter());
		plt.axes().tick_params(axis='x', labelsize=13);
		plt.xticks(rotation=30);
		plt.margins(x=0);
		save_fig_name = 'create_plot_' + str(j+1) + '.png';
		plt.savefig(save_fig_name, bbox_inches="tight");
		print(str(j+1)+"th iteration ends");
		fastest_block_index_count[max_block_index] += 1;
	
	max_count_index = 0;
	optimal_index = 0;
	for x in range(len(block_size_list)):
		if fastest_block_index_count[x] > max_count_index:
			max_count_index = fastest_block_index_count[x];
			optimal_index = x;

	f.write('OPTIMAL BLOCK SIZE: ' + str(block_size_list[optimal_index]));
	f.close();
开发者ID:jalowinner,项目名称:csc443,代码行数:60,代码来源:create_plot.py

示例5: make_plot

def make_plot(counts):
    """
    Plot the counts for the positive and negative words for each timestep.
    Use plt.show() so that the plot will popup.
    """
    positives=[]
    negatives=[]
    for i in counts:
        for j in i:
            if j[0]=="positive":
                positives.append(j[1])
            else:
                negatives.append(j[1])
    
    x_ticks=range(0,12)
    
    lineP=plt.plot(positives)
    plt.setp(lineP, color='b', marker='o', label="positive")
    
    lineN=plt.plot(negatives)
    plt.setp(lineN, color='g', marker='o', label="negative")
   
    plt.margins(0.1)
    plt.ylabel("Word count")
    plt.xlabel("Time step")
    plt.xticks(x_ticks)
    
    plt.legend(loc=0)
    plt.show()  
开发者ID:PragatiV,项目名称:Sentiment_Analysis_Spark,代码行数:29,代码来源:twitterStream.py

示例6: on_epoch_end

    def on_epoch_end(self, callback_data, model, epoch):
        # convert to numpy arrays
        data_batch = model.data_batch.get()
        noise_batch = model.noise_batch.get()
        # value transform
        data_batch = self._value_transform(data_batch)
        noise_batch = self._value_transform(noise_batch)
        # shape transform
        data_canvas = self._shape_transform(data_batch)
        noise_canvas = self._shape_transform(noise_batch)
        # plotting options
        im_args = dict(interpolation="nearest", vmin=0., vmax=1.)
        if self.nchan == 1:
            im_args['cmap'] = plt.get_cmap("gray")
        fname = self.filename+'_data_'+'{:03d}'.format(epoch)+'.png'
        Image.fromarray(np.uint8(data_canvas*255)).convert('RGB').save(fname)
        fname = self.filename+'_noise_'+'{:03d}'.format(epoch)+'.png'
        Image.fromarray(np.uint8(noise_canvas*255)).convert('RGB').save(fname)

        # plot logged WGAN costs if logged
        if model.cost.costfunc.func == 'wasserstein':
            giter = callback_data['gan/gen_iter'][:]
            nonzeros = np.where(giter)
            giter = giter[nonzeros]
            cost_dis = callback_data['gan/cost_dis'][:][nonzeros]
            w_dist = medfilt(np.array(-cost_dis, dtype='float64'), kernel_size=101)
            plt.figure(figsize=(400/self.dpi, 300/self.dpi), dpi=self.dpi)
            plt.plot(giter, -cost_dis, 'k-', lw=0.25)
            plt.plot(giter, w_dist, 'r-', lw=2.)
            plt.title(self.filename, fontsize=self.font_size)
            plt.xlabel("Generator Iterations", fontsize=self.font_size)
            plt.ylabel("Wasserstein estimate", fontsize=self.font_size)
            plt.margins(0, 0, tight=True)
            plt.savefig(self.filename+'_training.png', bbox_inches='tight')
            plt.close()
开发者ID:NervanaSystems,项目名称:neon,代码行数:35,代码来源:plotting_callbacks.py

示例7: plot_perfect_recall_rates_for_dg_weightings_no_err_bars

def plot_perfect_recall_rates_for_dg_weightings_no_err_bars(parsed_data, additional_plot_title):
    set_size_buckets = Parser.get_dictionary_list_of_convergence_and_perfect_recall_for_dg_weightings(parsed_data)

    # x, y_iters, std_iters, y_ratios, std_ratios
    x = range(30)
    results_2 = Parser.get_avg_convergence_for_x_and_set_size(2, set_size_buckets, x)
    results_3 = Parser.get_avg_convergence_for_x_and_set_size(3, set_size_buckets, x)
    results_4 = Parser.get_avg_convergence_for_x_and_set_size(4, set_size_buckets, x)
    results_5 = Parser.get_avg_convergence_for_x_and_set_size(5, set_size_buckets, x)

    plt.rcParams.update({'font.size': 25})
    plt.ylabel('Convergence ratio')
    plt.xlabel('Turnover rate')
    plt.title('Average convergence rate by DG-weighting, ' + additional_plot_title)

    p2 = plt.plot(results_2[0], results_2[3])
    p3 = plt.plot(results_3[0], results_3[3])
    p4 = plt.plot(results_4[0], results_4[3])
    p5 = plt.plot(results_5[0], results_5[3])

    plt.legend((p2[0], p3[0], p4[0], p5[0]), ('2x5', '3x5', '4x5', '5x5'))
               # bbox_to_anchor=(1, 0.9), ncol=1, fancybox=True, shadow=True)
    plt.grid(True)
    plt.margins(0.01)

    plt.yticks(np.arange(0, 1.1, .1))

    plt.show()
开发者ID:williampeer,项目名称:DeepBytes,代码行数:28,代码来源:PlotLib.py

示例8: draw_label

def draw_label(label, img, label_names, colormap=None):
    plt.subplots_adjust(left=0, right=1, top=1, bottom=0,
                        wspace=0, hspace=0)
    plt.margins(0, 0)
    plt.gca().xaxis.set_major_locator(plt.NullLocator())
    plt.gca().yaxis.set_major_locator(plt.NullLocator())

    if colormap is None:
        colormap = label_colormap(len(label_names))

    label_viz = label2rgb(label, img, n_labels=len(label_names))
    plt.imshow(label_viz)
    plt.axis('off')

    plt_handlers = []
    plt_titles = []
    for label_value, label_name in enumerate(label_names):
        fc = colormap[label_value]
        p = plt.Rectangle((0, 0), 1, 1, fc=fc)
        plt_handlers.append(p)
        plt_titles.append(label_name)
    plt.legend(plt_handlers, plt_titles, loc='lower right', framealpha=.5)

    f = io.BytesIO()
    plt.savefig(f, bbox_inches='tight', pad_inches=0)
    plt.cla()
    plt.close()

    out_size = (img.shape[1], img.shape[0])
    out = PIL.Image.open(f).resize(out_size, PIL.Image.BILINEAR).convert('RGB')
    out = np.asarray(out)
    return out
开发者ID:chen-hongbo,项目名称:labelme,代码行数:32,代码来源:utils.py

示例9: plot_faces

def plot_faces(filename, args):
    dset = gusto_dataset.GustoDataset(filename)
    segments = dset.get_face_segments()
    for seg in segments:
        plt.plot(seg[:,0], seg[:,2], '-o', c='k')
    plt.axis('equal')
    plt.margins(0.1)
开发者ID:jzrake,项目名称:gusto,代码行数:7,代码来源:plot.py

示例10: graph_TwoLines

def graph_TwoLines(aValues, bValues, l, labels, molecule, worksheet, augmented, yLabel, graphFolder, aLabel, bLabel):
    #graph_HFandCCSDT
    '''graphs CCSDT and HF on same axis'''
    if worksheet==worksheetCharged:
        chargeFolder=chargedFolder
    if worksheet==worksheetNeutral:
        chargeFolder=neutralFolder
    if augmented==True:
        augmentedFolder=augFolder
    if augmented==False:
        augmentedFolder=ccFolder

    plt.plot(l, aValues, color=primaryColor, lw=2, ls='-', marker='s', label=molecule + aLabel)
    plt.plot(l, bValues, color=secondaryColor, lw=2, ls='-', marker='o', label=molecule + bLabel)

    plt.xticks(l, labels, rotation = '30', ha='right')
    plt.margins(0.015, 0.05)
    plt.subplots_adjust(bottom=0.2, top=0.85)
    plt.ylabel(yLabel)
    plt.legend(loc='upper center', bbox_to_anchor=(.5, 1.2), numpoints = 1, shadow=True, ncol=2)
    plt.grid(True)

    if not os.path.exists(path + '/ALL GRAPHS' + graphFolder +chargeFolder+augmentedFolder):
            os.makedirs(path + '/ALL GRAPHS' + graphFolder +chargeFolder+augmentedFolder)
    plt.savefig(path + '/ALL GRAPHS' + graphFolder +chargeFolder+augmentedFolder+ molecule + '.eps')
    #plt.show()
    plt.close()
开发者ID:hectorsprotege,项目名称:corr,代码行数:27,代码来源:data_extraction_test.py

示例11: generate

    def generate(self, title=None):
        max_duration = 0
        for machine_nr in self.__tasks:
            machine = self.__tasks[machine_nr]
            for start_time in machine:
                job_nr = machine[start_time]['job_nr']
                duration = machine[start_time]['duration']
                color = self.__colors[job_nr % len(self.__colors)]

                plt.hlines(machine_nr, start_time, start_time + duration, colors=color, lw=50)
                plt.text(start_time + 0.1, machine_nr + 0.1, str(job_nr), bbox=dict(facecolor='white', alpha=1.0)) #fontdict=dict(color='white'))

                if duration + start_time > max_duration:
                    max_duration = duration + start_time

        plt.margins(1)
        if self.__n_machines is 0:
            plt.axis([0, max_duration, 0.8, len(self.__tasks)])
        else:
            plt.axis([0, max_duration, -0.8, self.__n_machines])
        plt.xticks(range(0, max_duration, 1))
        if title:
            plt.title(title)
        plt.xlabel("Time")
        plt.ylabel("Machines")
        if self.__n_machines is 0:
            plt.yticks(range(0, len(self.__tasks), 1))
        else:
            plt.yticks(range(0, self.__n_machines, 1))

        self.__fig.savefig(self.__out_dir + sep + title + '.png')
开发者ID:droodev,项目名称:jobshop-pyage,代码行数:31,代码来源:gantt_generator.py

示例12: graph_OneLine

def graph_OneLine(values, l, labels, molecule, worksheet, augmented, yLabel, graphFolder):
    #graph_HF_CORR
    #line graphs HF values and corr values
    #s all graphs with just one line

        if worksheet==worksheetCharged:
            chargeFolder=chargedFolder
        if worksheet==worksheetNeutral:
            chargeFolder=neutralFolder
        if augmented==True:
            augmentedFolder=augFolder
        if augmented==False:
            augmentedFolder=ccFolder

        plt.plot(l, values, color=primaryColor, lw=2, ls='-', marker='s', label=molecule)

        plt.xticks(l, labels, rotation = '30', ha='right')
        plt.margins(0.09, 0.09)

        #y_formatter = plt.ticker.ScalarFormatter(useOffset=False)
        #ax.yaxis.set_major_formatter(y_formatter)

        plt.subplots_adjust(bottom=0.2, top=0.85)
        plt.ylabel(yLabel)
        plt.legend(loc='upper center', bbox_to_anchor=(.5, 1.2), numpoints = 1, shadow=True, ncol=3)
        plt.grid(True)
        if not os.path.exists(path + '/ALL GRAPHS' + graphFolder +chargeFolder+augmentedFolder):
            os.makedirs(path + '/ALL GRAPHS' + graphFolder +chargeFolder+augmentedFolder)
        plt.savefig(path + '/ALL GRAPHS' + graphFolder +chargeFolder+augmentedFolder+ molecule + '.eps')
        plt.close()
开发者ID:hectorsprotege,项目名称:corr,代码行数:30,代码来源:data_extraction_test.py

示例13: stepplot

def stepplot(x, y, labels, plot_titles):

        """Generates Correlation Graph. 
        With the x,y coordinates, labels, and plot titles
        established, the step-plots can be generated. Output 
        is PDF file format"""

        plt.figure()      #makes new image for each plot  
        
        #plot x & y stemplot. format plot points
        plt.stem(x, y, linefmt='k--', markerfmt='ro', basefmt='k-')               
        
        #set x-axis labels and set them vertical. size 10 font.
        plt.xticks(x, labels, rotation='vertical', fontsize = 10)
              
        #set titles for graph and axes
        plt.title(plot_titles[0])
        plt.xlabel("Biomarkers")
        plt.ylabel("Correlation Values")
        
        # slightly move axis away from plot. prevents clipping the labels 
        plt.margins(0.2)
        
        # Tweak spacing to prevent clipping of tick-labels
        plt.subplots_adjust(bottom=0.15)
        
        plt.tight_layout()   #prevents labels from being clipped
                  

        with PdfPages(plot_titles[0]+'.pdf') as pdf: #creates new file for each figure
            pdf.savefig()
开发者ID:dolleyj,项目名称:flatfile_visualizer,代码行数:31,代码来源:flatfile_visualizer.py

示例14: _make_plot

    def _make_plot(cls, title, depths, names, filename):
        """ Create a PNG plot of the graph data

        Args:
            title: title of the plot
            depths: Values to be graphed
            names: Names of each of the bins being graphed
            filename: Full path of the file for the resulting PNG

        Returns:
            None

        Raises:
            None
        """
        plt.figure()
        plt.title(title)
        plt.xlabel('Graph Depth')
        plt.ylabel('Count')
        plt.margins(0.01)
        plt.subplots_adjust(bottom=0.15)
        plt.hist(depths, histtype='bar', label=names, bins=10)
        plt.rc('legend', **{'fontsize': 8})
        plt.legend(shadow=True, fancybox=True)
        plt.savefig(filename, format='png')
开发者ID:softbalajibi,项目名称:poll-generator,代码行数:25,代码来源:graph.py

示例15: main

def main():
    options = _parse_args()

    n_g = 3
    n_h = 1

    b_3 = 11 - 4/3 * n_g
    b_2 = 22/3 - 4/3 * n_g - 1/6 * n_h
    b_1 = - 4/3 * n_g - 1/10 * n_h

    a_inv_1 = 58.98
    a_inv_2 = 29.60
    a_inv_3 = 8.47

    q = np.logspace(4, 20, 10)

    m_z = 91

    a_inv_1_q = a_inv_1 + b_1 / (2 * np.pi) * np.log(q / m_z)
    a_inv_2_q = a_inv_2 + b_2 / (2 * np.pi) * np.log(q / m_z)
    a_inv_3_q = a_inv_3 + b_3 / (2 * np.pi) * np.log(q / m_z)

    pl.plot(q, a_inv_1_q, label='U(1)')
    pl.plot(q, a_inv_2_q, label='SU(2)')
    pl.plot(q, a_inv_3_q, label='SU(3)')
    pl.xscale('log')
    pl.margins(0.05)
    pl.savefig('running.pdf')

    np.savetxt('running-1.txt', np.column_stack([q, a_inv_1_q]))
    np.savetxt('running-2.txt', np.column_stack([q, a_inv_2_q]))
    np.savetxt('running-3.txt', np.column_stack([q, a_inv_3_q]))
开发者ID:martin-ueding,项目名称:physics654-presentation,代码行数:32,代码来源:running.py


注:本文中的matplotlib.pyplot.margins函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。