本文整理汇总了Python中matplotlib.pyplot.jet函数的典型用法代码示例。如果您正苦于以下问题:Python jet函数的具体用法?Python jet怎么用?Python jet使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了jet函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: baltimore_gmm
def baltimore_gmm(data):
def fgmm(x):
return abs(np.sum(gmmimmat[gmmimmat > x]) * .0005 ** 2 - 0.95)
model = gmm.GMM(3)
model.train(data, random=False)
X, Y = makegrid(data)
gmmimmat = np.zeros(X.shape)
for i in xrange(X.shape[0]):
for j in xrange(X.shape[1]):
gmmimmat[i, j] = model.dgmm(np.array([X[i, j], Y[i, j]]))
plt.jet()
plt.imshow(gmmimmat, origin='lower')
plt.ylim([0, X.shape[0]])
plt.xlim([0, X.shape[1]])
plt.savefig('baltimore_gmm.pdf')
thresh = opt.fmin(fgmm, 10)[0]
bools = gmmimmat > thresh
mat = np.zeros(X.shape)
mat += bools
plt.imshow(mat, origin='lower')
plt.ylim([0, X.shape[0]])
plt.xlim([0, X.shape[1]])
plt.savefig('gmmavoid.pdf')
示例2: plotear
def plotear(xi,yi,zi):
# mask inner circle
interior1 = sqrt(((xi+1.5)**2) + (yi**2)) < 1.0
interior2 = sqrt(((xi-1.5)**2) + (yi**2)) < 1.0
zi[interior1] = ma.masked
zi[interior2] = ma.masked
p.figure(figsize=(16,10))
pyplot.jet()
max=2.8
min=0.4
steps = 50
levels=list()
labels=list()
for i in range(0,steps):
levels.append(int((max-min)/steps*100*i)*0.01+min)
for i in range(0,steps/2):
labels.append(levels[2*i])
CSF = p.contourf(xi,yi,zi,levels,norm=colors.LogNorm())
CS = p.contour(xi,yi,zi,levels, format='%.3f', labelsize='18')
p.clabel(CS,labels,inline=1,fontsize=9)
p.title('electrostatic potential of two spherical colloids, R=lambda/3',fontsize=24)
p.xlabel('z-coordinate (3*lambda)',fontsize=18)
p.ylabel('radial coordinate r (3*lambda)',fontsize=18)
# add a vertical bar with the color values
cbar = p.colorbar(CSF,ticks=labels,format='%.3f')
cbar.ax.set_ylabel('potential (reduced units)',fontsize=18)
cbar.add_lines(CS)
p.show()
示例3: plot_percent_traffic
def plot_percent_traffic(category, num_bins, city):
'''
plots percent traffic (review_counts) of category in bin
'''
a, b =bin_by_review_count(category, num_bins, city)
c = []
max_ratio = 0
for i in xrange(len(a)):
c.append([])
for j in xrange(len(a[i])):
try:
ratio = a[i][j]/float(b[i][j])
c[i].append(ratio)
if ratio > max_ratio:
max_ratio = ratio
# print i,j,max_ratio
except ZeroDivisionError:
c[i].append('NA')
# print c
for i in xrange(len(c)):
for j in xrange(len(c[i])):
if c[i][j] == 'NA':
c[i][j] = 0
plt.imshow(c, interpolation='none', alpha = 1)
max_lat, min_lat, max_lon, min_lon = city_edges(city)
plt.xticks([0,len(c[0])-1],[min_lon, max_lon])
plt.yticks([0,len(c)-1],[min_lat, max_lat])
plt.jet()
cb = plt.colorbar() #make color bar
cb.set_ticks([0,max_ratio]) #two ticks
cb.set_ticklabels(['low traffic','lots of traffic']) # put text labels on them
示例4: draw
def draw(ax, mu, Sigma):
# 描画のクリア
ax.collections = []
# 等高線を描画
xlist = np.linspace(-5, 5, 50)
ylist = np.linspace(-5, 5, 50)
x,y = np.meshgrid(xlist,ylist)
z = np.zeros((50,50))
for i in range(len(ylist)):
for j in range(len(xlist)):
xx = np.array([[xlist[j]], [ylist[i]]])
z[i,j] = gaussian(xx, mu, Sigma)
cs = ax.pcolor(x, y, z)
plt.colorbar(cs)
plt.jet()
#plt.bone()
ax.contour(x, y, z, np.linspace(0.0001,0.5,25), colors='k', linewidth=1)
# ガウス分布の平均を描画
ax.scatter(mu[0], mu[1], c='b', marker='x')
# 軸の調整
ax.set_xlim(-5,5)
ax.set_ylim(-5,5)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('2D Normal distribution')
ax.grid()
plt.draw()
示例5: plot_bins
def plot_bins(category,num_bins, city):
'''
takes a category and city and plots the bins for it
'''
a, b = make_bins(category, num_bins, city)
c = []
max_ratio = 0
for i in xrange(len(a)):
c.append([])
for j in xrange(len(a[i])):
try:
ratio = a[i][j]/float(b[i][j])
c[i].append(ratio)
if ratio > max_ratio:
max_ratio = ratio
# print i,j,max_ratio
except ZeroDivisionError:
c[i].append('NA')
# print c
for i in xrange(len(c)):
for j in xrange(len(c[i])):
if c[i][j] == 'NA':
c[i][j] = max_ratio
plt.imshow(c, interpolation='none', alpha = 1)
max_lat, min_lat, max_lon, min_lon = city_edges(city)
plt.xticks([0,len(c[0])-1],[min_lon, max_lon])
plt.yticks([0,len(c)-1],[min_lat, max_lat])
plt.jet()
cb = plt.colorbar() #make color bar
cb.set_ticks([max_ratio, 0]) #two ticks
cb.set_ticklabels(['high concentration', 'low concentration']) # put text labels on them
示例6: plot_saccade_stats
def plot_saccade_stats(sac,bins=36, fig=None):
"""
Draws individual saccades (polar coordinatess), directional histogram,
individual saccades (cartesian coordinates), and a histogram of saccade
peak velocities
"""
if fig is None:
fig = plt.figure()
dx = sac.xf - sac.xi
dy = sac.yf - sac.yi
radii = sac.amplitude
thetas = np.arctan2(dy, dx)
theta_bins = np.linspace(-np.pi,np.pi,bins+1)
theta_hist = np.histogram(thetas,bins=theta_bins)
plt.jet()
plt.title("individual saccades")
# XXX: there's an interesting artifact if we use sac.amplitude as the
# sac_length in the scatter plot below
sac_length = np.sqrt((dx**2+dy**2))
plt.subplot(221,polar=True)
plt.scatter(thetas,sac_length,alpha=.5,c=sac.amplitude,s=sac.vpeak/10.0)
plt.colorbar()
plt.subplot(222,polar=True)
plt.title("Directional histogram")
bars = plt.bar(theta_bins[:-1],theta_hist[0],width=(2*np.pi)/bins, alpha=.5)
plt.subplot(223)
plt.scatter(dx,dy,alpha=.5,c=sac.amplitude,s=sac.vpeak/10.0)
#plt.hist(sac_length,bins=100)
#plt.xlabel("saccade lengths (pixels)")
plt.subplot(224)
plt.hist(sac.vpeak,bins=100)
plt.xlabel("saccade peak velocities")
示例7: test_pca_white
def test_pca_white(sh=(12, 12), m=500, eps=0.1, rc=(10, 10), out_dir="img"):
# Visualize examples in r x c grid of pca whitened images.
# Also show that the covariance matrix of whitening data
# is a diagonal matrix with descending values
x = test_pca_input(sh, m)
pca = PCA(x)
x_white, mean = pca.whiten_pca(x, eps=eps)
rows, cols = rc
f, axes = plt.subplots(rows, cols, sharex='col', sharey='row')
plt.subplots_adjust(hspace=0.1, wspace=0)
plt.jet()
for r in range(rows):
for c in range(cols):
axes[r][c].imshow(x_white[:, r*cols + c].reshape(sh))
axes[r][c].axis('off')
path = os.path.join(out_dir, "pca_filters_{}_{}_{}.png".format(sh, m, eps))
print("saving {}...".format(path))
plt.savefig(path, bbox_inches='tight')
cv = np.dot(x_white, x_white.T)
plt.clf()
plt.imshow(cv)
plt.show()
示例8: image_gen
def image_gen(dataName, initValue, finalValue, increment,imgdpi):
for i in range(initValue,finalValue,increment):
if not os.path.exists(dataName+"r_"+str(i)+"_abspsi2.png"):
real=open(dataName + '_' + str(i)).read().splitlines()
img=open(dataName + 'i_' + str(i)).read().splitlines()
a_r = numpy.asanyarray(real,dtype='f8') #64-bit double
a_i = numpy.asanyarray(img,dtype='f8') #64-bit double
a = a_r[:] + 1j*a_i[:]
b = np.reshape(a,(xDim,yDim))
f = plt.imshow(abs(b)**2)
plt.jet()
plt.gca().invert_yaxis()
plt.savefig(dataName+"r_"+str(i)+"_abspsi2.png",dpi=imgdpi)
plt.close()
g = plt.imshow(np.angle(b))
plt.gca().invert_yaxis()
plt.savefig(dataName+"r_"+str(i)+"_phi.png",dpi=imgdpi)
plt.close()
f = plt.imshow(abs(np.fft.fftshift(np.fft.fft2(b)))**2)
plt.gca().invert_yaxis()
plt.jet()
plt.savefig(dataName+"p_"+str(i)+"_abspsi2.png",dpi=imgdpi)
plt.close()
g = plt.imshow(np.angle(np.fft.fftshift(np.fft.fft2(b))))
plt.gca().invert_yaxis()
plt.savefig(dataName+"p_"+str(i)+"_phi.png",dpi=imgdpi)
plt.close()
print "Saved figure: " + str(i) + ".png"
plt.close()
else:
print "File(s) " + str(i) +".png already exist."
示例9: makeConfMat
def makeConfMat(estClasses, gtClasses, outFilename, numClasses = None, plotLabels = False):
#If not defined, find number of unique numbers in gtClasses
if numClasses == None:
numClasses = len(np.unique(gtClasses))
#X axis is est, y axis is gt
#First index is y, second is x
confMat = np.zeros((numClasses, numClasses))
numInstances = len(estClasses)
for (gtIdx, estIdx) in zip(gtClasses.astype(int), estClasses.astype(int)):
confMat[gtIdx, estIdx] += 1
plt.jet()
plt.matshow(confMat)
plt.colorbar()
plt.xlabel("Est class")
plt.ylabel("True class")
plt.title("Confusion matrix")
ax = plt.gca()
ax.xaxis.set_ticks_position('bottom')
#Plot labels for each field
if plotLabels:
for i in range(numClasses):
for j in range(numClasses):
labelStr = generateStatString(confMat, i, j)
#text receives x, y coord of plot
ax.text(j, i, labelStr, fontweight='bold',
horizontalalignment='center', verticalalignment='center',
bbox={'facecolor':'white'}, fontsize=6)
#plt.show()
plt.savefig(outFilename)
示例10: baltimore_kde
def baltimore_kde(data):
def fkde(x):
return abs(np.sum(kdeimmat[kdeimmat > x]) * .0005 ** 2 - 0.95)
X, Y = makegrid(data)
kdeimmat = np.zeros(X.shape)
kernel = stats.gaussian_kde(data.T)
for i in xrange(X.shape[0]):
for j in xrange(X.shape[1]):
kdeimmat[i, j] = kernel.evaluate(np.array([X[i, j], Y[i, j]]))
plt.jet()
plt.imshow(kdeimmat, origin='lower')
plt.ylim([0, X.shape[0]])
plt.xlim([0, X.shape[1]])
plt.savefig('baltimore_kde.pdf')
thresh = opt.fmin(fkde, 10)[0]
bools = kdeimmat > thresh
mat = np.zeros(X.shape)
mat += bools
plt.imshow(mat, origin='lower')
plt.ylim([0, X.shape[0]])
plt.xlim([0, X.shape[1]])
plt.savefig('kdeavoid.pdf')
示例11: struct_fact
def struct_fact(density,name,imgdpi):
fig, ax = plt.subplots()
#f = plt.quiver(gx,gy)
f = plt.imshow((np.abs(np.fft.fftshift(np.fft.fft2(density)))),cmap=plt.get_cmap('prism'))
cbar = fig.colorbar(f)
cbar.set_clim(1e6,1e11)
plt.jet()
plt.savefig(name + "_struct_log10.png",dpi=imgdpi)
plt.close()
示例12: heatmap_plot
def heatmap_plot(data, size, ratio, dir_name):
im = plt.imshow(data, interpolation='none', aspect=ratio) # change the aspect if needed
plt.xticks(range(size))
plt.jet()
plt.colorbar()
plt.clim(0,BAR_RANGE)
# plt.show()
plt.savefig(dir_name + 'comp.png')
plt.close()
示例13: scaleAxis
def scaleAxis(data,dataName,label,value,imgdpi):
fig, ax = plt.subplots()
ax.xaxis.set_major_locator(ScaledLocator(dx=dx))
ax.xaxis.set_major_formatter(ScaledLocator(dx=dx))
f = plt.imshow(abs(data)**2)
cbar = fig.colorbar(f)
plt.gca().invert_yaxis()
plt.jet()
plt.savefig(dataName+"r_"+str(value)+"_"+label +".png",dpi=imgdpi)
plt.close()
示例14: run3Dheatmap
def run3Dheatmap(X):
plt.imshow(data, interpolation='none', aspect=3./20)
plt.xticks(range(3), ['a', 'b', 'c'])
plt.jet()
plt.colorbar()
plt.show()
示例15: opPot
def opPot(dataName,imgdpi):
data = open(dataName).read().splitlines()
a = numpy.asanyarray(data,dtype='f8')
b = np.reshape(a,(xDim,yDim))
fig, ax = plt.subplots()
f = plt.imshow((b))
plt.gca().invert_yaxis()
cbar = fig.colorbar(f)
plt.jet()
plt.savefig(dataName + ".png",dpi=imgdpi)
plt.close()