本文整理汇总了Python中matplotlib.pyplot.imsave函数的典型用法代码示例。如果您正苦于以下问题:Python imsave函数的具体用法?Python imsave怎么用?Python imsave使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了imsave函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_concentration_image
def create_concentration_image(self, image_data):
cmap = cm.get_cmap()
cmap._init()
is_comparison_run = isinstance(self.scenario_run, models.ComparisonScenarioRun)
if not is_comparison_run or self.scenario_run.comparison_mode == "Absolute":
alphas = np.abs([min(n, 1.0) for n in np.linspace(0, 2, cmap.N)])
vmax = np.max(image_data)
vmin = np.min(image_data)
else:
results_max = np.max(image_data)
results_min = np.min(image_data)
if np.abs(results_max) > np.abs(results_min):
vmax = results_max
vmin = -results_max
else:
vmax = -results_min
vmin = results_min
results_range = vmax - vmin
value_array = np.linspace(vmin, vmax, cmap.N)
alphas = np.array([min(np.abs(v) / results_range * 2, 1.0) for v in value_array])
cmap._lut[:-3, -1] = alphas
if is_comparison_run:
output_directory = self.scenario_run.output_directory_1
else:
output_directory = self.scenario_run.output_directory
plt.imsave(fname=os.path.join(output_directory, "concentrations.png"),
arr=image_data, format='png', vmax=vmax, vmin=vmin)
示例2: input_image_setup
def input_image_setup(img_name, img2_name):
''' Nimmt ein Bild als input, erstellt eine "Regel-Karte". Bei der Bild-
erstellung bedenken: Rot = Gitter, Gruen = Verzweigt, Blau = Radial, wobei ein schwarzer
Pixel ein Zentrum definiert. '''
#TODO: Document
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import procedural_city_generation
import os
#TODO:translate
img = mpimg.imread(img_name)
img2 = mpimg.imread(img2_name)
import matplotlib.pyplot as plt
path=os.path.dirname(procedural_city_generation.__file__)
print path
plt.imsave(path+"/temp/diffused.png",img2,cmap='gray')
with open(path+"/temp/isdiffused.txt",'w') as f:
f.write("False")
img*=255
img2*=255
return img, img2
示例3: plot_brights
def plot_brights(ax, path, star, regionList, goal=False):
'''
Components of this routine:
Projected brightness map
Please note that this has been modified for use in diagnostic plots,
there should really be a way to specify a windowNumber for real data
'''
currentWindow = 0
###########################
# Make the brightness map #
###########################
img = make_bright_image(star, regionList, currentWindow, goal=goal)
plt.imsave(path + "temp.jpg", img, cmap='hot', vmin=0.85, vmax=1.15)
plt.imshow(img, cmap='hot')
#Create the plot
bmap = Basemap(projection='moll', lon_0 = 0, ax=ax)
bmap.warpimage(path + "temp.jpg", ax=ax)
if goal:
ax.set_title("Desired Map")
else:
ax.set_title("Average Map")
示例4: main
def main():
"""
Args: save_path output_dir
"""
args = sys.argv
save_dir = args[1]
output_dir = args[2]
layer_list = [
'conv1/Conv/Conv2D',
'conv2/Conv/Conv2D',
'conv3/Conv/Conv2D',
'conv4/Conv/Conv2D',
'conv5/Conv/Conv2D',
'conv5/Conv_1/Conv2D',
'conv6/Conv/Conv2D'
]
channels = [16, 32, 64, 64, 128, 256, 2]
sess = tf.Session()
with sess.as_default():
maximize_output_multi = layers.prepare_graph(movie.build_net, save_dir)
for i, layer in enumerate(layer_list):
folder_name = layer.replace('/', '_')
directory = os.path.join(output_dir, folder_name)
create_dir(directory)
for channel in range(channels[i]):
result = maximize_output_multi(layer, channel, octave_n=4, iter_n=100, step=5.0, seed=123)
plt.imsave(os.path.join(directory, str(channel) + '.png'), result)
示例5: toFilenameAndTiff
def toFilenameAndTiff(outputDirPath, kv):
key, image=kv
fname = outputDirPath+'/w_'+str(key)+'.tif'
if(len(image.shape)==3):
image=image.T
image=np.swapaxes(image,1,2)
imsave(fname, image)
示例6: draw_tile
def draw_tile(metadata, config, target_path):
decoder = config.build_decoder()
decoder_layers = nn.layers.get_all_layers(decoder.l_out)
print " decoder layer output shapes:"
nparams = len(nn.layers.get_all_params(decoder.l_out))
nn.layers.set_all_param_values(decoder.l_out, metadata['param_values'][-nparams:])
for layer in decoder_layers:
name = layer.__class__.__name__
print " %s %s" % (string.ljust(name, 32), nn.layers.get_output_shape(layer))
mesh = np.linspace(0.001, 0.999, 20)
z = np.zeros((400, 2), dtype='float32')
for i in xrange(20):
for j in xrange(20):
z[20 * i + j, :] = np.array([norm.ppf(mesh[i]), norm.ppf(mesh[j])])
sample = theano.function([decoder.l_z.input_var], nn.layers.get_output(decoder_layers[-1]))
digits = sample(z)
tile = np.zeros((20 * 28, 20 * 28), dtype='float32')
for i in xrange(20):
for j in xrange(20):
d = np.reshape(digits[20 * i + j, :], (28, 28))
tile[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28] = d
plt.imsave(target_path + 'tile.png', tile, cmap=matplotlib.cm.Greys)
示例7: segment
def segment(sourceImage, DstImage):
import sys
sys.path.insert(0,'/home/joe/github/caffe-with_crop/python')
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import caffe
# caffe.set_mode_gpu()
# caffe.set_device(0)
# load image, switch to BGR, subtract mean, and make dims C x H x W for Caffe
im = Image.open(sourceImage)
in_ = np.array(im, dtype=np.float32)
in_ = in_[:,:,::-1]
in_ -= np.array((104.00698793,116.66876762,122.67891434))
in_ = in_.transpose((2,0,1))
# load net
net = caffe.Net('/home/joe/github/caffe-with_crop/examples/fcn-32s-pascal-context/deploy.prototxt', '/home/joe/github/caffe-with_crop/examples/fcn-32s-pascal-context/fcn-32s-pascalcontext.caffemodel', caffe.TEST)
# shape for input (data blob is N x C x H x W), set data
net.blobs['data'].reshape(1, *in_.shape)
net.blobs['data'].data[...] = in_
# run net and take argmax for prediction
net.forward()
out = net.blobs['score'].data[0].argmax(axis=0)
# plt.imshow(out)
plt.imsave(DstImage, out)
示例8: showEigFace
def showEigFace(self, idx=0):
eigface = np.float32(self.eigenfaces[idx])
print 'Eigface', eigface
print 'SHAPE:', eigface.shape
im = np.reshape(eigface, self.imsize)
picName = 'eigFaceImage' + str(idx) + '.png'
plt.imsave(picName, im, cmap=pylab.gray())
示例9: main
def main():
logging.basicConfig(level=logging.INFO)
imagename = "1_27_s.bmp"
unaryfilename = "1_27_s.c_unary.txt"
logging.info("Read image.")
img = utility.readimg(imagename)
logging.info("Load unaries.")
unaries = utility.loadunaryfile(os.path.join("data", unaryfilename))
# Calculate energy
unaries = -np.log(unaries)
numlabels = unaries.shape[2]
w = 100000
l = 0.5
pd1 = PD1(img, unaries, numlabels, w, l)
pd1.segment()
img = pd1.get_labeled_image()
logging.info("Save image.")
plt.imsave("img_out", img)
plt.imshow(img)
plt.show()
示例10: save
def save(self, face_img, face_id, pose, landmark, name):
# save the face image
pose_bin_id = self.get_pose_bin_id(pose.yaw, pose.pitch)
#print "Yaw=%d Pitch=%d Bin Name=%d" % (int(pose.yaw), int(pose.pitch), pose_bin_id)
save_path = self.bin2path(pose_bin_id) + '/' + name + '.png'
#print "saving image to path:", save_path
plt.imsave(save_path, face_img)
# save the data file
# this data file could be optimized, by sorting the face_id
print "saving image data file to path:", self.data_file_path()
# here will change what we want to store
# basically, we need the following data for ranking
# 1. yaw, pitch and roll: yaw and pitch should match first,
# and then roll.
# 2. distance between eyes: to estimate the resolution
# 3. and also I think I need the name, but this could be provided by
# using the image file name
data_file_handler = open(self.data_file_path(), 'a')
print >>data_file_handler, "%d"%pose_bin_id,
print >>data_file_handler, "%s"%name,
print >>data_file_handler, "%d %d %d"%(pose.yaw, pose.pitch, pose.roll),
for point in landmark.all_points:
print >>data_file_handler, point,
print >>data_file_handler, ""
return save_path
示例11: detect
def detect():
try:
image = request.files.get('file')
recog_face = bool(int(request.files.get('face').file.read()))
files = {'file': StringIO(image.file.read())}
objs = requests.post('http://{}/object'.format(OBJ_SERVER),
files=files)
objs = json.loads(objs.text)
print recog_face
if recog_face:
img = None
for bb in objs:
if bb['label'] == 'person':
if img is None:
image.file.seek(0)
img = io.imread(StringIO(image.file.read()))
x1, y1, x2, y2 = bb['bbox']
person_img = img[y1:y2, x1:x2]
# detect face
s = StringIO()
plt.imsave(s, person_img)
s.seek(0)
faces = requests.post('http://{}/face'.format(FACE_SERVER),
files={'file': s})
bb['face'] = json.loads(faces.text)
return json.dumps(objs)
except Exception as e:
print str(type(e)), e
示例12: save_results
def save_results(true_labels, predicted_labels, clf_name, classification_dir):
cm_int = confusion_matrix (true_labels, predicted_labels);
cm_float = cm_int/np.apply_along_axis(np.sum, 1, cm_int).astype('float');
report = classification_report(true_labels, predicted_labels, np.arange(0,len(class_names)), class_names);
# Save results
plt.imsave(classification_dir + '/' + clf_name + "_cm.png", cm_float , cmap=cmt.gray)
float_cm_file = classification_dir +'/' + clf_name + "_float_cm.txt"
fos = open(float_cm_file, 'w');
np.savetxt(fos,cm_float);
fos.close();
int_cm_file = classification_dir +'/' + clf_name + "_int_cm.txt"
fos = open(int_cm_file, 'w');
np.savetxt(fos,cm_int);
fos.close();
report_file = classification_dir +'/' + clf_name + "_report.txt"
fos = open(report_file, 'w');
fos.write(report);
fos.close();
labels_file = classification_dir +'/' + clf_name + "_labels.txt"
fos = open(labels_file, 'w');
np.savetxt(fos,np.column_stack((true_labels,predicted_labels)));
fos.close();
p, r, f1, s = precision_recall_fscore_support(true_labels, predicted_labels,labels=np.arange(0,len(class_names)))
prf1s_file = classification_dir +'/' + clf_name + "_prf1s.txt"
fos = open(prf1s_file, 'w');
np.savetxt(fos,np.column_stack((p, r, f1, s)));
fos.close();
示例13: plot2
def plot2(fn,p,wa,vmin,vmax,ups):
# Check matrix dimensions are the same
(m,n)=p.shape
if (m,n)!=wa.shape:
print "Matrix dimension mismatch"
# Set up output array and scaling constant
o=np.zeros((m*ups,n*ups,3))
vsca=1.0/(vmax-vmin)
# Assemble the output array
for i in range(m):
iu=i*ups
for j in range(n):
ju=j*ups
if wa[i,j]==1:
o[iu:iu+ups,ju:ju+ups,0]=1
o[iu:iu+ups,ju:ju+ups,1]=1
o[iu:iu+ups,ju:ju+ups,2]=1
else:
(re,gr,bl)=palette2(fscale(p[i,j],vmin,vsca))
o[iu:iu+ups,ju:ju+ups,0]=re
o[iu:iu+ups,ju:ju+ups,1]=gr
o[iu:iu+ups,ju:ju+ups,2]=bl
# Save the image
plt.imsave(fn,o)
示例14: main
def main():
parser = argparse.ArgumentParser(
description="Photometric Stereo",
)
parser.add_argument(
"--lightning",
nargs="?",
help="Filename of JSON file containing lightning information",
)
parser.add_argument(
"--mask",
nargs="?",
help="Filename of an image containing a mask of the object",
)
parser.add_argument(
"image",
nargs="*",
help="Images filenames",
)
parser.add_argument(
"--generate-map",
action='store_true',
help="Generate a map.png file which represends the colors of the "
"normal mapping.",
)
args = parser.parse_args()
if args.generate_map:
normals = generateNormalMap()
plt.imsave('map.png', normals)
return
if not len(args.image) >= 3:
print("Please specify 3+ image files.")
return
if args.lightning:
normals = photometricStereo(args.lightning, args.image)
if False:
try:
with open('data.pkl', 'rb') as fhdl:
normals = pickle.load(fhdl)
except:
with open('data.pkl', 'wb') as fhdl:
pickle.dump(normals, fhdl)
else:
normals = photometricStereoWithoutLightning(args.image)
if args.mask:
mask = getImage(args.mask)
mask = mask.T
print(normals.shape, mask.shape)
normals[mask<(mask.max() - mask.min())/2.] = np.nan
color = colorizeNormals(normals)
plt.imsave('out.png', color)
mesh.write3dNormals(normals, 'out-3dn.stl')
surface = mesh.surfaceFromNormals(normals)
mesh.writeMesh(surface, normals, 'out-mesh.stl')
示例15: prep_image
def prep_image(url,idx,dataset,datadir,width=224,filetype='jpg',verbose=False):
'''
Check to see image file has been downloaded at current size. If it has not,
download and resize image. Saves file to datadir/images/[dataset]_[idx]_w[width].[filetype]
e.g. datadir/images/train_10001_w256.bmp
args:
url: url of image source
idx: image row index
dataset: string 'train' or 'test' or other identifier
datadir: data directory
width: desired width of image. Will be resized to width squared
returns:
rawim: scaled and cropped image
'''
outpath = datadir + 'images/' + dataset + '_' + str(idx) + '_w' + str(width) + '.' + filetype
if not os.path.isfile(outpath):
if verbose:
print "downloading image #%s..." %str(idx)
try:
rawim = download_and_resize(url,width)
plt.imsave(outpath,rawim)
return rawim
except:
print "unable to download image #%i from url %s..." %(idx,url)
return None
else:
if verbose:
print "Image %i already downloaded. Loading from file..." % idx
rawim = plt.imread(outpath)
return rawim