当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.imread函数代码示例

本文整理汇总了Python中matplotlib.pyplot.imread函数的典型用法代码示例。如果您正苦于以下问题:Python imread函数的具体用法?Python imread怎么用?Python imread使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了imread函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: imread

    def imread(self, xy_range=None,
               f_data='daudi_PS_CD20_postwash.png',
               fold='../Lymphoma_optimal_Data_20161007/'):
        disp = self.disp

        # fold = '../Lymphoma_optimal_Data_20161007/'
        # Data = plt.imread(fold + 'daudi_PS_CD20_postwash.png')
        Data = plt.imread(fold + f_data)
        Ref = plt.imread(fold + 'reference_image.png')

        if xy_range is not None:
            # onvert a vector to four scalars
            minx, maxx, miny, maxy = xy_range
            Data = Data[miny:maxy, minx:maxx]
            Ref = Ref[miny:maxy, minx:maxx]

        bgData = np.mean(Data)
        bgRef = np.mean(Ref)
        NormFactor = bgRef / bgData
        if disp:
            print("NormFacter =", NormFactor)

        subNormAmp = np.sqrt(Data / Ref * NormFactor)

        if self.disp:
            print(Data.shape, Ref.shape, subNormAmp.shape)

        self.Data, self.Ref = Data, Ref
        self.subNormAmp = subNormAmp
开发者ID:jskDr,项目名称:jamespy_py3,代码行数:29,代码来源:recon_one.py

示例2: plotPhoto

def plotPhoto():

    i = plt.imread("img1.png")
    i2 = plt.imread("img2.png")
    # i=np.mean(i,2)

    """Get fft and ifft"""
    FFT1 = np.fft.fftshift(np.fft.fft2(i))
    IFFT1 = np.real(np.fft.ifft2(np.fft.ifftshift(FFT1)))

    FFT2 = np.fft.fftshift(np.fft.fft2(i2))
    IFFT2 = np.real(np.fft.ifft2(np.fft.ifftshift(FFT2)))

    """plot fft and ifft """
    plt.subplot(1, 2, 1)
    plt.imshow(np.log(abs(FFT1)) ** 2)
    plt.subplot(1, 2, 2)
    plt.imshow(IFFT1)
    plt.show()

    plt.subplot(1, 2, 1)
    plt.imshow(np.log(abs(FFT2)) ** 2)
    plt.subplot(1, 2, 2)
    plt.imshow(IFFT2)
    plt.show()
开发者ID:RobieH,项目名称:honours,代码行数:25,代码来源:capture.py

示例3: display_bb

def display_bb(name, name2bb, lpix, rpix, ov1pix, ov2pix):
  plt.clf()
  try:
    image_folder_name = str('_'.join(name.split('_')[:-1])) + '/'
    imagename = str(driving_images_dir + image_folder_name + name + '.jpeg')
    im = plt.imread(imagename)
  except:
    imagename = '/scail/group/deeplearning/sail-deep-gpu/brodyh/labeled_driving_images/' + name + '.jpeg'
    im = plt.imread(imagename)

  implot = plt.imshow(im)
  plt.plot(lpix[0, :], lpix[1, :], color = 'b')
  plt.plot(rpix[0, :], rpix[1, :], color = 'b')

  for i in xrange(0, ov1pix.shape[1]):
    plt.plot([ov1pix[0, i], ov2pix[0, i]], [ov1pix[1, i], ov2pix[1, i]], color = 'r', linestyle = '-', linewidth = 1.0)

  for b in name2bb[name]['boxes']:
    if get_area(b) < 20: continue
    plot_box(b['xmin'], b['ymin'], b['xmax'], b['ymax'], 'g')
    if b['depth'] == 0:
      plt.text((b['xmin'] + b['xmax']) / 2, (b['ymax'] + b['ymin']) / 2, 'unknown', color = 'm')
    else:
      plt.text((b['xmin'] + b['xmax']) / 2, (b['ymax'] + b['ymin']) / 2 - 10, str(int(b['depth'])), color = 'm')

  plt.axis('off')
  plt.xlim([1920, 0])
  plt.ylim([1280, 0])
  plt.draw()
  plt.pause(1.5)
开发者ID:brodyh,项目名称:sail-car-log,代码行数:30,代码来源:carDepthEstimation.py

示例4: site_to_array

def site_to_array(sitepath):
    '''Accepts absolute path to a single w1 image file (wavelength 1).
    Checks for additional channels and compiles all channels into a
    single three dimensional NumPy array.
    '''
    path, name = os.path.split(sitepath)
    
    w1check = re.search('w1', name)
    if(w1check):
        sarray = plt.imread(sitepath)

        files = os.listdir(path)
        w2check = name.replace('w1', 'w2')
        w3check = name.replace('w1', 'w3')
        w4check = name.replace('w1', 'w4')
        if(w2check in files):
            w2 = plt.imread(os.path.join(path, w2check))
            sarray = np.dstack((sarray, w2))

        if(w3check in files):
            w3 = plt.imread(os.path.join(path, w3check))
            sarray = np.dstack((sarray, w3))

        if(w4check in files):
            w4 = plt.imread(os.path.join(path, w4check))
            sarray = np.dstack((sarray, w4))

    return(sarray)
开发者ID:uc-clarklab,项目名称:arrayer,代码行数:28,代码来源:ArrayerAnalysis.py

示例5: init_map

def init_map():
    
    global aspect, mapImg, maskImg, burrImg, burrIndx, imgXSize, imgYSize, imgZSize, xOff
    
    # Display Background Map
    burrImg = Image.open('BurroughsIndxNoBg.png')
    (imgYSize, imgXSize) = (burrImg.height, burrImg.width)
        
    burrIndx = np.array(burrImg.convert('P'))
    
    # Clean up partial-surface pixels
    for y in range(imgYSize):
        for x in range(imgXSize):
            if burrIndx[y,x] not in (0, 1, 2, 3, 4, 5):
                burrIndx[y,x] = 0
    
    
    aspect = float(imgXSize)/float(imgYSize)
    (xScale, yScale) = (imgXSize * aspect / imgXSize, 1.)
    xOff = (1. - xScale)/2.
    
    # Load Background Image
    backImg = plt.imread('UHF42EdMap.png')
    axes.ax.imshow(backImg, extent=[xOff, xOff+xScale, 0, yScale], alpha=1)
    
    # Display Boroughs Index Map
    axes.ax.imshow(burrImg, extent=[xOff, xOff+xScale, 0, yScale])
    
    # Load mask map
    maskImg = plt.imread('BurroughsMask.png')
开发者ID:slehar,项目名称:service-prov,代码行数:30,代码来源:image.py

示例6: test_imsave

def test_imsave():
    # The goal here is that the user can specify an output logical DPI
    # for the image, but this will not actually add any extra pixels
    # to the image, it will merely be used for metadata purposes.

    # So we do the traditional case (dpi == 1), and the new case (dpi
    # == 100) and read the resulting PNG files back in and make sure
    # the data is 100% identical.
    from numpy import random
    random.seed(1)
    data = random.rand(256, 128)

    buff_dpi1 = io.BytesIO()
    plt.imsave(buff_dpi1, data, dpi=1)

    buff_dpi100 = io.BytesIO()
    plt.imsave(buff_dpi100, data, dpi=100)

    buff_dpi1.seek(0)
    arr_dpi1 = plt.imread(buff_dpi1)

    buff_dpi100.seek(0)
    arr_dpi100 = plt.imread(buff_dpi100)

    assert arr_dpi1.shape == (256, 128, 4)
    assert arr_dpi100.shape == (256, 128, 4)

    assert_array_equal(arr_dpi1, arr_dpi100)
开发者ID:4over7,项目名称:matplotlib,代码行数:28,代码来源:test_image.py

示例7: match_plot

def match_plot(plotdata, outfile):
    """Plot list of motifs with database match and p-value
    "param plotdata: list of (motif, dbmotif, pval)
    """
    fig_h = 2
    fig_w = 7

    nrows = len(plotdata)
    ncols = 2
    fig = plt.figure(figsize=(fig_w, nrows * fig_h))

    for i, (motif, dbmotif, pval) in enumerate(plotdata):
        text = "Motif: %s\nBest match: %s\np-value: %0.2e" % (motif.id, dbmotif.id, pval)

        grid = ImageGrid(fig, (nrows, ncols, i * 2 + 1), nrows_ncols=(2, 1), axes_pad=0)

        for j in range(2):
            axes_off(grid[j])

        tmp = NamedTemporaryFile(dir=mytmpdir(), suffix=".png")
        motif.to_img(tmp.name, format="PNG", height=6)
        grid[0].imshow(plt.imread(tmp.name), interpolation="none")
        tmp = NamedTemporaryFile(dir=mytmpdir(), suffix=".png")
        dbmotif.to_img(tmp.name, format="PNG")
        grid[1].imshow(plt.imread(tmp.name), interpolation="none")

        ax = plt.subplot(nrows, ncols, i * 2 + 2)
        axes_off(ax)

        ax.text(0, 0.5, text, horizontalalignment="left", verticalalignment="center")

    plt.savefig(outfile, dpi=300, bbox_inches="tight")
    plt.close(fig)
开发者ID:georgeg9,项目名称:gimmemotifs,代码行数:33,代码来源:plot.py

示例8: test_imsave

def test_imsave(fmt):
    if fmt in ["jpg", "jpeg", "tiff"]:
        pytest.importorskip("PIL")
    has_alpha = fmt not in ["jpg", "jpeg"]

    # The goal here is that the user can specify an output logical DPI
    # for the image, but this will not actually add any extra pixels
    # to the image, it will merely be used for metadata purposes.

    # So we do the traditional case (dpi == 1), and the new case (dpi
    # == 100) and read the resulting PNG files back in and make sure
    # the data is 100% identical.
    np.random.seed(1)
    # The height of 1856 pixels was selected because going through creating an
    # actual dpi=100 figure to save the image to a Pillow-provided format would
    # cause a rounding error resulting in a final image of shape 1855.
    data = np.random.rand(1856, 2)

    buff_dpi1 = io.BytesIO()
    plt.imsave(buff_dpi1, data, format=fmt, dpi=1)

    buff_dpi100 = io.BytesIO()
    plt.imsave(buff_dpi100, data, format=fmt, dpi=100)

    buff_dpi1.seek(0)
    arr_dpi1 = plt.imread(buff_dpi1, format=fmt)

    buff_dpi100.seek(0)
    arr_dpi100 = plt.imread(buff_dpi100, format=fmt)

    assert arr_dpi1.shape == (1856, 2, 3 + has_alpha)
    assert arr_dpi100.shape == (1856, 2, 3 + has_alpha)

    assert_array_equal(arr_dpi1, arr_dpi100)
开发者ID:QuLogic,项目名称:matplotlib,代码行数:34,代码来源:test_image.py

示例9: main

def main():
	plt.figure(0)
	plt.xlim(0,2416)
	plt.ylim(1678,0)
	im=plt.imread('../final_img.png')
	implot=plt.imshow(im)
	plt.axis('off')

	path_list=open(sys.argv[1],'r').read().splitlines()
	i=0
	# add '.txt' if needed
	for path in path_list:
		latlong=[[float(f) for f in line.split(',')[9:11]] for line in open(sys.argv[2]+path).read().splitlines()]
		
		# common plots for all the paths
		plt.figure(0)
		plot_given_plot(latlong,plt)
		
		# different plots for all the paths
		i=i+1
		plt.figure(i)
		plt.xlim(0,2416)
		plt.ylim(1678,0)
		im=plt.imread('../final_img.png')
		implot=plt.imshow(im)
		plt.axis('off')
		plot_given_plot(latlong,plt)
		plt.savefig(sys.argv[3]+str(i),ext='png',close=False,verbose=True,dpi=350,bbox_inches='tight',pad_inches=0)
	
	plt.figure(0)
	plt.savefig(sys.argv[3]+'all',ext='png',close=False,verbose=True,dpi=350,bbox_inches='tight',pad_inches=0)
开发者ID:architsharma97,项目名称:Privacy_SPMD,代码行数:31,代码来源:Check_Paths.py

示例10: main

def main():

    f_ultrasounds = [img for img in glob.glob("/home/r/NerveSegmentation/train/*.tif") if 'mask' not in img]
    # f_ultrasounds.sort()  
    f_masks       = [fimg_to_fmask(fimg) for fimg in f_ultrasounds]
    
    images_shown = 0 
	
    for f_ultrasound, f_mask in zip(f_ultrasounds, f_masks):

        img  = plt.imread(f_ultrasound)
        mask = plt.imread(f_mask)

        if mask_not_blank(mask):

            # plot_image(grays_to_RGB(img),  title=f_ultrasound)
            # plot_image(grays_to_RGB(mask), title=f_mask)

            f_combined = f_ultrasound + " & " + f_mask
            #img        = image_with_mask(img, mask)
            plot_image(image_with_mask(img, mask), title=f_combined)
            plot_image(img, title=f_combined)
            print('plotted:', f_combined)
            images_shown += 1

        if images_shown >= IMAGES_TO_SHOW:
            break

    df    = []
    MyImg = np.zeros([len(img), len(img[0])],dtype=np.uint8)
    f_ultrasounds = [img for img in glob.glob("/home/r/NerveSegmentation/test/*.tif")]
    for f_ultrasound in zip(f_ultrasounds):
        img  = plt.imread(f_ultrasound)
    	df.append(img)
开发者ID:RajivBiswas,项目名称:Machine-Learning,代码行数:34,代码来源:knskd1_copy.py

示例11: get_image

def get_image(image_name, test=False):
    """
    Return the image

    params
    ------
        image_name: string, name of the image

    returns
    -------
        image, calc: (ndarray, ndarray)
            returns a tuple of images, one being a sculpture, the other a mask
            Returns None, None if the mask doesn't exist
    """
    try:
        image = imread(os.path.join(data_all_path, image_name))[:-1][::-1]        
        calc = imread(os.path.join(
                            masks_all_path,
                            image_name[:-3] + 'png'))

    except IOError:
        print "IOError %s" % os.path.join(masks_train_path,
                                          image_name[:-3] + 'png')
        return None, None

    return image, calc
开发者ID:NelleV,项目名称:SORBB,代码行数:26,代码来源:load.py

示例12: main

def main():

    f_ultrasounds = [img for img in glob.glob("../input/train/*.tif") if 'mask' not in img]
    # f_ultrasounds.sort()  
    f_masks       = [fimg_to_fmask(fimg) for fimg in f_ultrasounds]
    
    images_shown = 0 

    for f_ultrasound, f_mask in zip(f_ultrasounds, f_masks):

        img  = plt.imread(f_ultrasound)
        mask = plt.imread(f_mask)

        if mask_not_blank(mask):

            # plot_image(grays_to_RGB(img),  title=f_ultrasound)
            # plot_image(grays_to_RGB(mask), title=f_mask)

            f_combined = f_ultrasound + " & " + f_mask 
            plot_image(image_with_mask(img, mask), title=f_combined)
            print('plotted:', f_combined)
            images_shown += 1

        if images_shown >= IMAGES_TO_SHOW:
            break
开发者ID:KentChun33333,项目名称:VistinoEventDes,代码行数:25,代码来源:Kaggle_ultrasound_.py

示例13: convert_single_file_from_ilastik

def convert_single_file_from_ilastik( image_path, segmentation_path, out_path ):
    """Reads a file that was segmented with ilastik and turns it into a
    file as seedwater would create it.
    
    Parameters
    ----------
    
    image_path : string
        path to the image file
        
    segmentation_path : string
        path to the ilastik segmented image file

    out_path : string
        where the converted file should be stored
    """
    full_image = plt.imread(image_path)

    segmented_image = plt.imread(segmentation_path)

    seed_image = create_seeds_from_image(segmented_image)

    segmentation = create_segmentation_from_seeds( full_image, seed_image )
    
    cv2.imwrite(out_path, segmentation)
开发者ID:kursawe,项目名称:MCSTracker,代码行数:25,代码来源:in_out.py

示例14: __init__

    def __init__(self, photo_string, art_string, content=0.001, style=0.2e6, total_var=0.1e-7):
        # load network
        self.net = build_model()
        # load layers
        layers = ['conv4_2', 'conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']
        layers = {k: self.net[k] for k in layers}
        self.layers = layers
        # load images
        im = plt.imread(art_string)
        self.art_raw, self.art = prep_image(im)
        im = plt.imread(photo_string)
        self.photo_raw, self.photo = prep_image(im)
        # precompute layer activations for photo and artwork
        input_im_theano = T.tensor4()
        self._outputs = lasagne.layers.get_output(layers.values(), input_im_theano)
        self.photo_features = {k: theano.shared(output.eval({input_im_theano: self.photo}))
                          for k, output in zip(layers.keys(), self._outputs)}
        self.art_features = {k: theano.shared(output.eval({input_im_theano: self.art}))
                        for k, output in zip(layers.keys(), self._outputs)}
        # Get expressions for layer activations for generated image
        self.generated_image = theano.shared(floatX(np.random.uniform(-128, 128, (1, 3, IMAGE_W, IMAGE_W))))

        gen_features = lasagne.layers.get_output(layers.values(), self.generated_image)
        gen_features = {k: v for k, v in zip(layers.keys(), gen_features)}
        self.gen_features = gen_features

        # set the weights of the regularizers
        self._content, self._style, self._total_var = content, style, total_var
开发者ID:bebee,项目名称:DeepArt,代码行数:28,代码来源:StyleTransfer.py

示例15: test_load_from_url

def test_load_from_url():
    path = Path(__file__).parent / "baseline_images/test_image/imshow.png"
    url = ('file:'
           + ('///' if sys.platform == 'win32' else '')
           + path.resolve().as_posix())
    plt.imread(url)
    plt.imread(urllib.request.urlopen(url))
开发者ID:QuLogic,项目名称:matplotlib,代码行数:7,代码来源:test_image.py


注:本文中的matplotlib.pyplot.imread函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。