本文整理汇总了Python中matplotlib.pyplot.hist函数的典型用法代码示例。如果您正苦于以下问题:Python hist函数的具体用法?Python hist怎么用?Python hist使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了hist函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: histogram
def histogram(A, B, nameA, nameB):
plt.hist(A, bins=255, alpha=0.5, color='b', label = nameA)
plt.hist(B, bins=255, alpha=0.5, color='r', label = nameB)
plt.xlabel('Intensity')
plt.ylabel('Number of occurrencies')
plt.legend()
plt.show()
示例2: hist
def hist(fname, data, bins, xlabel, ylabel, title, facecolor='green', alpha=0.5, transparent=True, **kwargs):
plt.clf()
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title)
plt.hist(x=data, bins=bins, facecolor=facecolor, alpha=alpha, **kwargs)
plt.savefig(fname, transparent=transparent)
示例3: predicted_probabilities
def predicted_probabilities(y_true, y_pred, n_groups=30):
"""Plots the distribution of predicted probabilities.
Parameters
----------
y_true : array_like
Observed labels, either 0 or 1.
y_pred : array_like
Predicted probabilities, floats on [0, 1].
n_groups : int, optional
The number of groups to create. The default value is 30.
Notes
-----
.. plot:: pyplots/predicted_probabilities.py
"""
plt.hist(y_pred, n_groups)
plt.xlim([0, 1])
plt.xlabel('Predicted Probability')
plt.ylabel('Count')
title = 'Distribution of Predicted Probabilities (n = {})'
plt.title(title.format(len(y_pred)))
plt.tight_layout()
示例4: plot_net_distribution
def plot_net_distribution(net_mat, n_bins):
"""Plot the network distribution.
Parameters
----------
net_mat: np.ndarray
the net represented in a matrix way.
n_bins: int
the number of intervals we want to use to plot the distribution.
Returns
-------
fig: matplotlib.pyplot.figure
the figure of the distribution required of the relations between
elements defined by the `net_mat`.
"""
net_mat = net_mat.reshape(-1)
fig = plt.figure()
plt.hist(net_mat, n_bins)
l1 = plt.axvline(net_mat.mean(), linewidth=2, color='k', label='Mean',
linestyle='--')
plt.legend([l1], ['Mean'])
return fig
示例5: plot_ekf_vs_mc
def plot_ekf_vs_mc():
def fx(x):
return x**3
def dfx(x):
return 3*x**2
mean = 1
var = .1
std = math.sqrt(var)
data = normal(loc=mean, scale=std, size=50000)
d_t = fx(data)
mean_ekf = fx(mean)
slope = dfx(mean)
std_ekf = abs(slope*std)
norm = scipy.stats.norm(mean_ekf, std_ekf)
xs = np.linspace(-3, 5, 200)
plt.plot(xs, norm.pdf(xs), lw=2, ls='--', color='b')
plt.hist(d_t, bins=200, normed=True, histtype='step', lw=2, color='g')
actual_mean = d_t.mean()
plt.axvline(actual_mean, lw=2, color='g', label='Monte Carlo')
plt.axvline(mean_ekf, lw=2, ls='--', color='b', label='EKF')
plt.legend()
plt.show()
print('actual mean={:.2f}, std={:.2f}'.format(d_t.mean(), d_t.std()))
print('EKF mean={:.2f}, std={:.2f}'.format(mean_ekf, std_ekf))
示例6: plot_scatter_with_histograms
def plot_scatter_with_histograms(xvals, yvals, colour='k', oneToOneLine=True, xlabel=None, ylabel=None, title=None):
gs = gridspec.GridSpec(5, 5)
xmin = np.floor(min(xvals))
xmax = np.ceil(max(xvals))
ymin = np.floor(min(yvals))
ymax = np.ceil(max(yvals))
plt.subplot(gs[1:, 0:4])
plt.plot(xvals, yvals, 'o', color=colour)
if xlabel is not None:
plt.xlabel(xlabel)
if ylabel is not None:
plt.ylabel(ylabel)
if oneToOneLine:
oneToOneMax = max([max(xvals),max(yvals)])
plt.plot([0,oneToOneMax],[0,oneToOneMax],'b--')
plt.xlim(xmin,xmax)
plt.ylim(ymin,ymax)
plt.subplot(gs[0, 0:4])
plt.hist(xvals, np.linspace(xmin,xmax,50))
plt.axis('off')
plt.subplot(gs[1:,4])
plt.hist(yvals, np.linspace(ymin,ymax,50), orientation='horizontal')
plt.axis('off')
if title is not None:
plt.suptitle(title)
示例7: main
def main():
train = pd.DataFrame.from_csv('train.csv')
places_index = train['place_id'].values
places_loc_sqr_wei = []
for i, place_id in enumerate(train['place_id'].unique()):
if not i % 100:
print(i)
place_df = train.iloc[places_index == place_id]
place_weights_acc_sqred = 1 / (place_df['accuracy'].values ** 2)
places_loc_sqr_wei.append([place_id,
np.average(place_df['x'].values, weights=place_weights_acc_sqred),
np.std(place_df['x'].values),
np.average(place_df['y'].values, weights=place_weights_acc_sqred),
np.std(place_df['y'].values),
np.average(np.log(place_df['accuracy'].values)),
np.std(np.log(place_df['accuracy'].values)),
place_df.shape[0]])
# print(places_loc_sqr_wei[-1])
# plt.hist2d(place_df['x'].values, place_df['y'].values, bins=100)
# plt.show()
plt.hist(np.log(place_df['accuracy'].values), bins=20)
plt.show()
places_loc_sqr_wei = np.array(places_loc_sqr_wei)
column_names = ['x_mean', 'x_sd', 'y_mean', 'y_sd', 'accuracy_mean', 'accuracy_sd', 'n_persons']
places_loc_sqr_wei = pd.DataFrame(data=places_loc_sqr_wei[:, 1:], index=places_loc_sqr_wei[:, 0],
columns=column_names)
now = str(datetime.datetime.now().strftime("%Y-%m-%d-%H-%M"))
places_loc_sqr_wei.to_csv('places_loc_sqr_weights_%s.csv' % now)
示例8: createHistogram
def createHistogram(df, pic, bins=45, rates=False):
data=mergeMatrix(df, pic)
matrix=sortMatrix(df, pic)
density = gaussian_kde(data)
xs = np.linspace(min(data), max(data), max(data))
density.covariance_factor = lambda : .25
density._compute_covariance()
#xs = np.linspace(min(data), max(data), 1000)
fig,ax1 = plt.subplots()
#plt.xlim([0, 4000])
plt.hist(data, bins=bins, range=[-500, 4000], histtype='stepfilled', color='grey', alpha=0.5)
lims = plt.ylim()
height=lims[1]-2
for i in range(0,len(matrix)):
currentRow = matrix[i][np.nonzero(matrix[i])]
plt.plot(currentRow, np.ones(len(currentRow))*height, '|', color='black')
height -= 2
plt.axvline(x=0, color='red', linestyle='dashed')
#plt.axvline(x=1000, color='black', linestyle='dashed')
#plt.axvline(x=2000, color='black', linestyle='dashed')
#plt.axvline(x=3000, color='black', linestyle='dashed')
if rates:
rates = get_rate(df, pic)
ax1.text(-250, 4, str(rates[0]), size=15, ha='center', va='center', color='green')
ax1.text(500, 4, str(rates[1]), size=15, ha='center', va='center', color='green')
ax1.text(1500, 4, str(rates[2]), size=15, ha='center', va='center', color='green')
ax1.text(2500, 4, str(rates[3]), size=15, ha='center', va='center', color='green')
ax1.text(3500, 4, str(rates[4])+ r' $\frac{\mathsf{Spikes}}{\mathsf{s}}$', size=15, ha='center', va='center', color='green')
plt.ylim([0,lims[1]+5])
plt.xlim([0, 4000])
plt.title('Histogram for ' + str(pic))
ax1.set_xticklabels([-500, 'Start\nStimulus', 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000])
plt.xlabel('Time (ms)')
plt.ylabel('Counts (Spikes)')
print lims
arr_hand = getPic(pic)
imagebox = OffsetImage(arr_hand, zoom=.3)
xy = [3200, lims[1]+5] # coordinates to position this image
ab = AnnotationBbox(imagebox, xy, xybox=(30., -30.), xycoords='data',boxcoords="offset points")
ax1.add_artist(ab)
ax2 = ax1.twinx() #Necessary for multiple y-axes
#Use ax2.plot to draw the hypnogram. Be sure your x values are in seconds
ax2.plot(xs, density(xs) , 'g', drawstyle='steps')
plt.ylim([0,0.001])
plt.yticks([0.0001,0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007, 0.0008, 0.0009])
ax2.set_yticklabels([1,2,3,4, 5, 6, 7, 8, 9])
plt.ylabel(r'Density ($\cdot \mathsf{10^{-4}}$)', color='green')
plt.gcf().subplots_adjust(right=0.89)
plt.gcf().subplots_adjust(bottom=0.2)
plt.savefig(pic, dpi=150)
示例9: plotter
def plotter(fromdat,filename):
plt.figure()
bins = fromdat.bins
plt.hist(fromdat.all_val, bins=bins, color=(0, 0, 0, 1 ),
histtype='step',label = 'All Hits' )
plt.ylabel('Counts' )
plt.xlabel('Energy kev' )
plt.title('All Detectors Spectrum\n'+ filename )
plt.legend(loc='upper right' )
plt.show()
plt.figure()
his_det1 = plt.hist(fromdat.det1_val, bins=bins, color=(0, 0, 0, 0.7),
histtype='step', label = fromdat.detector1 )
his_det2 = plt.hist(fromdat.det2_val, bins=bins, color=(0, 1, 0, 0.7 ),
histtype='step', label = fromdat.detector2 )
plt.ylabel('Counts' )
plt.xlabel('Energy kev' )
plt.title('Overlay Plot Both Spectrum \n ' + filename)
plt.legend(loc='upper right' )
plt.show()
his_det3 = plt.hist(fromdat.det3_val, bins=bins, color=(0, 0, 0, 0.5 ),
histtype='step',label = fromdat.detector3 )
plt.ylabel('Counts' )
plt.xlabel('Energy kev' )
plt.title( fromdat.detector3)
plt.legend(loc='upper right' )
plt.show()
示例10: show
def show(self):
figure = plt.figure(self.figure_num)
num_histograms = len(self.histograms)
num_subplots = len(self.subplots)
y_dim = 4.0
x_dim = math.ceil((num_subplots + num_histograms)/y_dim)
for i in range(len(self.subplots)):
title, img = self.subplots[i]
print "plotting: " + str(title)
print img.shape
ax = plt.subplot(x_dim, y_dim, i + 1)
format_subplot(ax, img)
plt.title(title)
plt.imshow(img)
for i in range(len(self.histograms)):
title, img = self.histograms[i]
print "plotting: " + str(title)
print img.shape
plt.subplot(x_dim,y_dim, num_subplots + i + 1)
plt.title(title)
plt.hist(img, bins=10, alpha=0.5)
示例11: CNS
def CNS(directory):
print directory
MASegDict = defaultdict(list)
seqCount = Counter()
numFeatures = defaultdict(list)
speciesDistributionMaster = defaultdict(list)
for species in [file for file in os.listdir(directory) if file.endswith('.bed')]:
try:
print directory+species
seqCount[species] = 0
speciesDistribution = Counter()
with open(directory+species,'r') as f:
lines = f.readlines()
numFeatures[species] = [len(lines)]
if species.endswith('ConservedElements.bed'):
for line in lines:
if line:
lineList = line.split('\t')
lineList2 = lineList[-1].split(';')
lineList3 = lineList2[1].split(',')
tempDict = {word.split(':')[0]:int(word.split(':')[1] != '0') for word in lineList3}
MASegDict[lineList2[2].replace('SegmentID=','')] = sum(tempDict.values())
seqCount[species] += int(lineList[2])-int(lineList[1])
for species2 in tempDict.keys():
if species2 not in speciesDistribution.keys():
speciesDistribution[species2] = 0
else:
speciesDistribution[species2] += tempDict[species2]
else:
for line in lines:
if line:
lineList = line.split('\t')
lineList2 = lineList[-1].split(';')
lineList3 = lineList2[1].split(',')
tempDict = {word.split(':')[0]:int(word.split(':')[1] != '0') for word in lineList3}
seqCount[species] += int(lineList[2])-int(lineList[1])
for species2 in tempDict.keys():
if species2 not in speciesDistribution.keys():
speciesDistribution[species2] = 0
else:
speciesDistribution[species2] += tempDict[species2]
speciesDistributionMaster[species] = speciesDistribution
#print speciesDistributionMaster
#print numFeatures
#print ','.join('%s:%d'%(key,speciesDistributionMaster[species][key]) for key in speciesDistributionMaster[species].keys())
except:
print 'Error with ' + species
with open(directory+'CNSStatistics.txt','w') as f:
for species in sorted(numFeatures.keys()):
if species:
try:
f.write(species+'\nTotalSequenceAmount=%dbps\nNumberOfElements=%d\n%s\n\n'%(seqCount[species],numFeatures[species][0],'SpeciesDistribution='+','.join('%s:%d'%(key,speciesDistributionMaster[species][key]) for key in speciesDistributionMaster[species].keys())))#FIXME Add species number and graph
except:
print 'Error writing ' + species
plt.figure()
plt.hist(MASegDict.values(),bins=np.arange(0,int(np.max(MASegDict.values()))) + 0.5)
plt.title('Distribution of Number of Species for Conserved Segments')
plt.ylabel('Count')
plt.xlabel('Number of species in Conserved Segment')
plt.savefig(directory+'SpeciesNumberDistribution.png')
示例12: plotHist
def plotHist(data, bins=None, figsize=(7,7), title="", **kwargs):
if (bins==None):
bins=len(data)
plt.figure(figsize=figsize);
plt.hist(data,bins=bins, **kwargs)
plt.title(title)
plt.show()
示例13: create_random_sample_from_beta
def create_random_sample_from_beta(success, total, sample_size=10000, plot=False):
""" Create random sample from the Beta distribution """
failures = total - success
data = stats.beta.rvs(success, failures, size=sample_size)
if plot: hist(data, 100); show()
return data
示例14: fluence_dist
def fluence_dist(self):
""" Plots the fluence distribution and gives the mean and median fluence
values of the sample """
fluences = []
for i in range(0,len(self.fluences),1):
try:
fluences.append(float(self.fluences[i]))
except ValueError:
continue
fluences = np.array(fluences)
mean_fluence = np.mean(fluences)
median_fluence = np.median(fluences)
print('Mean Fluence =',mean_fluence,'(15-150 keV) [10^-7 erg cm^-2]')
print('Median Fluence =',median_fluence,'(15-150 keV) [10^-7 erg cm^-2]')
plt.figure()
plt.xlabel('Fluence (15-150 keV) [$10^{-7}$ erg cm$^{-2}$]')
plt.ylabel('Number of GRBs')
plt.xscale('log')
minimum, maximum = min(fluences), max(fluences)
plt.axvline(mean_fluence,color='red',linestyle='-')
plt.axvline(median_fluence,color='blue',linestyle='-')
plt.hist(fluences,bins= 10**np.linspace(np.log10(minimum),np.log10(maximum),20),color='grey',alpha=0.5)
plt.show()
示例15: test_power
def test_power():
a = 5. # shape
samples = 10000
s1 = np.random.power(a, samples)
s2 = common.rand_pow_array(a, samples)
plt.figure('power test')
count1, bins1, ignored1 = plt.hist(s1,
bins=30,
label='numpy',
histtype='step')
x = np.linspace(0, 1, 100)
y = a * x**(a - 1.0)
normed_y1 = samples * np.diff(bins1)[0] * y
plt.plot(x, normed_y1, label='numpy.random.power fit')
count2, bins2, ignored2 = plt.hist(s2,
bins=30,
label='joinmarket',
histtype='step')
normed_y2 = samples * np.diff(bins2)[0] * y
plt.plot(x, normed_y2, label='common.rand_pow_array fit')
plt.title('testing power distribution')
plt.legend(loc='upper left')
plt.show()