本文整理汇总了Python中matplotlib.pyplot.grid函数的典型用法代码示例。如果您正苦于以下问题:Python grid函数的具体用法?Python grid怎么用?Python grid使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了grid函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotaBarra
def plotaBarra(nEntradas, nSaidas):
n_groups = 2
means_men = (nEntradas, nSaidas)
fig, ax = plt.subplots()
index = np.arange(n_groups)
bar_width = 0.15
opacity = 0.4
rects1 = plt.bar(index, means_men, bar_width, alpha=opacity, color='b')
#plt.xlabel('Tipo de passagem')
plt.ylabel(u'Valor absoluto', size=20)
plt.title(u'Número de passagens', size=20)
plt.xticks(index + bar_width/2, ('Entradas', u'Saídas'), size=16)
plt.legend()
plt.grid(True)
plt.axis((0, 2, 0, nSaidas + nEntradas + 1))
plt.tight_layout()
#plt.show()
plt.ylim(0,nEntradas + nSaidas + 1)
plt.savefig('grafico.png')
示例2: _plot
def _plot(self,names,title,style,when=0,showLegend=True):
if isinstance(names,str):
names = [names]
assert isinstance(names,list)
legend = []
for name in names:
assert isinstance(name,str)
legend.append(name)
# if it's a differential state
if name in self.xNames:
index = self.xNames.index(name)
ys = np.squeeze(self._log['x'])[:,index]
ts = np.arange(len(ys))*self.Ts
plt.plot(ts,ys,style)
if name in self.outputNames:
index = self.outputNames.index(name)
ys = np.squeeze(self._log['outputs'][name])
ts = np.arange(len(ys))*self.Ts
plt.plot(ts,ys,style)
if title is not None:
assert isinstance(title,str), "title must be a string"
plt.title(title)
plt.xlabel('time [s]')
if showLegend is True:
plt.legend(legend)
plt.grid()
示例3: plotTestData
def plotTestData(tree):
plt.figure()
plt.axis([0,1,0,1])
plt.xlabel("X axis")
plt.ylabel("Y axis")
plt.title("Green: Class1, Red: Class2, Blue: Class3, Yellow: Class4")
for value in class1:
plt.plot(value[0],value[1],'go')
plt.hold(True)
for value in class2:
plt.plot(value[0],value[1],'ro')
plt.hold(True)
for value in class3:
plt.plot(value[0],value[1],'bo')
plt.hold(True)
for value in class4:
plt.plot(value[0],value[1],'yo')
plotRegion(tree)
for value in classPlot1:
plt.plot(value[0],value[1],'g.',ms=3.0)
plt.hold(True)
for value in classPlot2:
plt.plot(value[0],value[1],'r.', ms=3.0)
plt.hold(True)
for value in classPlot3:
plt.plot(value[0],value[1],'b.', ms=3.0)
plt.hold(True)
for value in classPlot4:
plt.plot(value[0],value[1],'y.', ms=3.0)
plt.grid(True)
plt.show()
示例4: mlr_val_ridge
def mlr_val_ridge( RM, yE, rate = 2, more_train = True, center = None, alpha = 0.5, disp = True, graph = True):
"""
Validation is peformed as much as the given ratio.
"""
RMt, yEt, RMv, yEv = jchem.get_valid_mode_data( RM, yE, rate = rate, more_train = more_train, center = center)
print("Ridge: alpha = {}".format( alpha))
clf = linear_model.Ridge( alpha = alpha)
clf.fit( RMt, yEt)
print('Weight value')
#print clf.coef_.flatten()
plt.plot( clf.coef_.flatten())
plt.grid()
plt.xlabel('Tap')
plt.ylabel('Weight')
plt.title('Linear Regression Weights')
plt.show()
print('Training result')
mlr_show( clf, RMt, yEt, disp = disp, graph = graph)
print('Validation result')
r_sqr, RMSE = mlr_show( clf, RMv, yEv, disp = disp, graph = graph)
return r_sqr, RMSE
示例5: mlr_val_vseq_MMSE
def mlr_val_vseq_MMSE( RM, yE, v_seq, alpha = .5, disp = True, graph = True):
"""
Validation is peformed using vseq indexed values.
"""
org_seq = list(range( len( yE)))
t_seq = [x for x in org_seq if x not in v_seq]
RMt, yEt = RM[ t_seq, :], yE[ t_seq, 0]
RMv, yEv = RM[ v_seq, :], yE[ v_seq, 0]
w, RMt_1 = mmse_with_bias( RMt, yEt)
yEt_c = RMt_1*w
print('Weight values')
#print clf.coef_.flatten()
plt.plot( w.A1)
plt.grid()
plt.xlabel('Tap')
plt.ylabel('Weight')
plt.title('Linear Regression Weights')
plt.show()
RMv_1 = add_bias_xM( RMv)
yEv_c = RMv_1*w
if disp: print('Training result')
regress_show( yEt, yEt_c, disp = disp, graph = graph)
if disp: print('Validation result')
r_sqr, RMSE = regress_show( yEv, yEv_c, disp = disp, graph = graph)
#if r_sqr < 0:
# print 'v_seq:', v_seq, '--> r_sqr = ', r_sqr
return r_sqr, RMSE
示例6: plotFFT
def plotFFT(self):
# Generates plot of the FFT output. To view, run plotFFT.py in a separate terminal
figure1 = plt.figure(num= None, figsize=(12,12), dpi=80, facecolor='w', edgecolor='w')
plot1 = figure1.add_subplot(111)
line1, = plot1.plot( np.arange(0,512,0.5), np.zeros(1024), 'g-')
plt.xlabel('freq (MHz)',fontsize = 12)
plt.ylabel('Amplitude',fontsize = 12)
plt.title('Pre-mixer FFT',fontsize = 12)
plt.xticks(np.arange(0,512,50))
plt.xlim((0,512))
plt.grid()
plt.show(block = False)
count = 0
stop = 1.0e6
while(count < stop):
overflow = np.fromstring(self.fpga.read('overflow', 4), dtype = '>B')
print overflow
self.fpga.write_int('fft_snap_ctrl',0)
self.fpga.write_int('fft_snap_ctrl',1)
fft_snap = (np.fromstring(self.fpga.read('fft_snap_bram',(2**9)*8),dtype='>i2')).astype('float')
I0 = fft_snap[0::4]
Q0 = fft_snap[1::4]
I1 = fft_snap[2::4]
Q1 = fft_snap[3::4]
mag0 = np.sqrt(I0**2 + Q0**2)
mag1 = np.sqrt(I1**2 + Q1**2)
fft_mags = np.hstack(zip(mag0,mag1))
plt.ylim((0,np.max(fft_mags) + 300.))
line1.set_ydata((fft_mags))
plt.draw()
count += 1
示例7: make_let_im
def make_let_im(let_file, dim = 16, y_lo = 70, y_hi = 220, x_lo = 10, x_hi = 200, edge_pix = 150, plot_let = False):
letter = mpimg.imread(let_file)
letter = letter[y_lo:y_hi, x_lo:x_hi, 0]
for i in range(letter.shape[1]):
if letter[0:edge_pix, i].any() == 0: # here is to remove the edge
letter[0:edge_pix, i] = 1
plt.imshow(letter, cmap='gray')
plt.grid('off')
plt.show()
x = np.arange(letter.shape[1])
y = np.arange(letter.shape[0])
f2d = interp2d(x, y, letter)
x_new = np.linspace(0, letter.shape[1], dim) # dim = 16
y_new = np.linspace(0, letter.shape[0], dim)
letter_new = f2d(x_new, y_new)
letter_new -= np.mean(letter_new)
if plot_let:
plt.imshow(letter_new, cmap = 'gray')
plt.grid('off')
plt.show()
letter_flat = letter_new.flatten() # letter_flat is a 1-dimensional array containing 256 elements
return letter_new, letter_flat
示例8: makePlot
def makePlot(
k,
counts,
yaxis=[],
width=0.8,
figsize=[14.0,8.0],
title="",
ylabel='tmpylabel',
xlabel='tmpxlabel',
labels=[],
show=False,
grid=True,
xticks=[],
yticks=[],
steps=5,
save=False
):
'''
'''
if not list(yaxis):
yaxis = np.arange(len(counts))
if not labels:
labels = yaxis
index = np.arange(len(yaxis))
fig, ax = plt.subplots()
fig.set_size_inches(figsize[0],figsize[1])
plt.bar(index, counts, width)
plt.title(title)
if not xticks:
print ('Making xticks')
ticks = makeTicks(yMax=len(yaxis),steps=steps)
xticks.append(ticks+width/2.)
xticks.append(labels)
print ('Done making xticks')
if yticks:
print ('Making yticks')
# plt.yticks([1,2000],[0,100])
plt.yticks(yticks[0],yticks[1])
# ax.set_yticks(np.arange(0,100,10))
print ('Done making yticks')
plt.xticks(xticks[0]+width/2., xticks[1])
plt.ylabel(ylabel)
plt.xlabel(xlabel)
# ax.set_xticks(range(0,len(counts)+2))
fig.autofmt_xdate()
# ax.set_xticklabels(ks)
plt.axis([0, len(yaxis), 0, max(counts) + (max(counts)/100)])
plt.grid(grid)
location = ROOT_FOLDER + "/../muchBazar/src/image/" + k + "distribution.png"
if save:
plt.savefig(location)
print ('Distribution written to: %s' % location)
if show:
plt.show()
示例9: draw_robot_way_2d
def draw_robot_way_2d(data_1, data_2, label_names, plate_name):
plt.plot(data_1, data_2)
plt.xlabel(label_names[0])
plt.ylabel(label_names[1])
plt.title(plate_name)
plt.grid(True)
plt.show()
示例10: plot_models
def plot_models(x, y, models, fname, mx=None, ymax=None, xmin=None):
plt.clf()
plt.scatter(x, y, s=10)
plt.title("Web traffic over the last month")
plt.xlabel("Time")
plt.ylabel("Hits/hour")
plt.xticks([w * 7 * 24 for w in range(10)], ["week %i" % w for w in range(10)])
if models:
if mx is None:
mx = sp.linspace(0, x[-1], 1000)
for model, style, color in zip(models, linestyles, colors):
# print "Model:",model
# print "Coeffs:",model.coeffs
plt.plot(mx, model(mx), linestyle=style, linewidth=2, c=color)
plt.legend(["d=%i" % m.order for m in models], loc="upper left")
plt.autoscale(tight=True)
plt.ylim(ymin=0)
if ymax:
plt.ylim(ymax=ymax)
if xmin:
plt.xlim(xmin=xmin)
plt.grid(True, linestyle="-", color="0.75")
示例11: createResponsePlot
def createResponsePlot(dataframe,plotdir):
mag = dataframe['MAGPDE'].as_matrix()
response = (dataframe['TFIRSTPUB'].as_matrix())/60.0
response[response > 60] = 60 #anything over 60 minutes capped at 6 minutes
imag5 = (mag >= 5.0).nonzero()[0]
imag55 = (mag >= 5.5).nonzero()[0]
fig = plt.figure(figsize=(8,6))
n,bins,patches = plt.hist(response[imag5],color='g',bins=60,range=(0,60))
plt.hold(True)
plt.hist(response[imag55],color='b',bins=60,range=(0,60))
plt.xlabel('Response Time (min)')
plt.ylabel('Number of earthquakes')
plt.xticks(np.arange(0,65,5))
ymax = text.ceilToNearest(max(n),10)
yinc = ymax/10
plt.yticks(np.arange(0,ymax+yinc,yinc))
plt.grid(True,which='both')
plt.hold(True)
x = [20,20]
y = [0,ymax]
plt.plot(x,y,'r',linewidth=2,zorder=10)
s1 = 'Magnitude 5.0, Events = %i' % (len(imag5))
s2 = 'Magnitude 5.5, Events = %i' % (len(imag55))
plt.text(35,.85*ymax,s1,color='g')
plt.text(35,.75*ymax,s2,color='b')
plt.savefig(os.path.join(plotdir,'response.pdf'))
plt.savefig(os.path.join(plotdir,'response.png'))
plt.close()
print 'Saving response.pdf'
示例12: show_trajectory
def show_trajectory(target, xc, yc): # pragma: no cover
plt.clf()
plot_arrow(target.x, target.y, target.yaw)
plt.plot(xc, yc, "-r")
plt.axis("equal")
plt.grid(True)
plt.pause(0.1)
示例13: plot_data
def plot_data(l):
fig, ax = plt.subplots()
counts, bins, patches = ax.hist(l,30,facecolor='yellow', edgecolor='gray')
# Set the ticks to be at the edges of the bins.
#ax.set_xticks(bins)
# Set the xaxis's tick labels to be formatted with 1 decimal place...
#ax.xaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
# Label the raw counts and the percentages below the x-axis...
bin_centers = 0.5 * np.diff(bins) + bins[:-1]
for count, x in zip(counts, bin_centers):
# Label the raw counts
ax.annotate(str(int(count)), xy=(x, 0), xycoords=('data', 'axes fraction'),
xytext=(0, -40), textcoords='offset points', va='top', ha='center')
# Label the percentages
percent = '%0.0f%%' % (100 * float(count) / counts.sum())
ax.annotate(percent, xy=(x, 0), xycoords=('data', 'axes fraction'),
xytext=(0, -50), textcoords='offset points', va='top', ha='center')
# Give ourselves some more room at the bottom of the plot
plt.subplots_adjust(bottom=0.15)
plt.grid(True)
plt.xlabel("total reply")
plt.ylabel("pages")
plt.title("2014/10/21-2014/10/22 sina new pages")
plt.show()
示例14: visualize_singular_values
def visualize_singular_values(args):
param_values = load_parameter_values(args.load_path)
for d in range(args.layers):
if args.rnn_type == 'lstm':
ws = param_values["/recurrentstack/lstm_" + str(d) + ".W_state"]
w_rec = ws[:, 3 * args.state_dim:]
elif args.rnn_type == 'simple':
w_rec = param_values["/recurrentstack/simplerecurrent_" + str(d) +
".W_state"]
else:
raise NotImplementedError
U, s, V = np.linalg.svd(w_rec, full_matrices=True)
plt.subplot(2, 1, 1)
plt.plot(np.arange(s.shape[0]), s, label='Layer_' + str(d))
plt.grid(True)
plt.legend(loc='upper right')
plt.title("Singular_values_of_recurrent_weights")
plt.subplot(2, 1, 2)
plt.plot(np.arange(s.shape[0]), np.log(s + 1E-15),
label='Layer_' + str(d))
plt.grid(True)
plt.title("Log_singular_values_of_recurrent_weights")
plt.tight_layout()
plt.savefig(args.save_path + "/visualize_singular_values.png")
logger.info("Figure \"visualize_singular_values"
".png\" saved at directory: " + args.save_path)
示例15: exec_transmissions
def exec_transmissions():
IP,IP_AP,files=parser_reduce()
plt.figure("GRAPHE_D'EVOLUTION_DES_TRANSMISSIONS")
ENS_TEMPS_, TRANSMISSION_ = transmissions(files)
plt.plot(ENS_TEMPS_, TRANSMISSION_,"r.", label="Transmissions: ")
lot = map(inet_aton, IP)
lot.sort()
iplist1 = map(inet_ntoa, lot)
for i in iplist1: #ici j'affiche les annotations et vérifie si j'ai des @ip de longueur 9 ou 8 pour connaitre la taille de la fenetre du graphe
if len(i)==9:
maxim_=i[-2:] #Sera utilisé pour la taille de la fenetre du graphe
plt.annotate(' Machine: '+ i ,horizontalalignment='left', xy=(1, float(i[-2:])), xytext=(1, float(i[-2:])-0.4),arrowprops=dict(facecolor='black', shrink=0.05),)
else:
maxim_=i[-1:] #Sera utilisé pour la taille de la fenetre du graphe
plt.annotate(' Machine: '+ i ,horizontalalignment='left', xy=(1, float(i[7])), xytext=(1, float(i[7])-0.4),arrowprops=dict(facecolor='black', shrink=0.05),)
for i in IP_AP: #ACCESS POINT ( cas spécial )
if i[-2:]:
plt.annotate(' access point: '+ i , xy=(1, i[7]), xytext=(1, float(i[7])-0.4),arrowprops=dict(facecolor='black', shrink=0.05),)
plt.ylim(0, (float(maxim_))+1) #C'est à ça que sert le tri
plt.xlim(1, 1.1)
plt.legend(loc='best',prop={'size':10})
plt.xlabel('Temps (s)')
plt.ylabel('IP machines transmettrices')
plt.grid(True)
plt.title("GRAPHE_D'EVOLUTION_DES_TRANSMISSIONS")
plt.legend(loc='best')
plt.show()