本文整理汇总了Python中matplotlib.pyplot.gcf函数的典型用法代码示例。如果您正苦于以下问题:Python gcf函数的具体用法?Python gcf怎么用?Python gcf使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了gcf函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot
def plot(self,plot_id):
device_id = sEtting.device_id #"LASS-Example0"
if self.first:
self.init()
plt.title(sEtting.mqtt_topic + ' Sensor data')
plt.ylabel('Sensor value')
plt.xlabel("Data sensing time")
if plot_id>0:
#FIXME error handler
if device_id in dEvices.devs:
x, y = dEvices.devs[device_id].get_values(sEtting.plot_cnt,plot_id)
self.first=0
else:
print("plot device:" + device_id + " not exist!")
return
else:
x, y = dEvices.get_values(sEtting.plot_cnt) #FIXME
self.first=0
# draw and show it
#self.fig.canvas.draw()
#plt.show(block=False)
if len(x)<=0 or not x :
print("data count=0, ignore plot. Maybe device id is wrong")
plt.gcf().autofmt_xdate()
(self.li, )= self.ax.plot(x, y)
self.li.set_xdata(x)
self.li.set_ydata(y)
self.fig.canvas.draw()
if sEtting.plot_save:
plt.savefig("lass_" + str(plot_id) + ".png")
else:
plt.show(block=False)
示例2: plot_jobs_by_skills
def plot_jobs_by_skills(cur, skills):
skill_jobs = {}
for skill in skills:
cur.execute('''select count(j.id) amount from jobs j where j.id in
(select js.job_id from job_skills js where js.skill=?)''',
(skill,))
res = cur.fetchone()
skill_jobs[skill] = res[0]
sorted_skill_jobs = zip(*sorted(skill_jobs.items(),
key=operator.itemgetter(1), reverse=False))
fig = plt.figure()
y_pos = np.arange(len(skill_jobs))
print y_pos
ax = plt.barh(y_pos, sorted_skill_jobs[1], align='center', alpha=0.3)
plt.yticks(y_pos, ['\n'.join(wrap(x, 10)) for x in sorted_skill_jobs[0]])
plt.ylabel('Skill')
plt.xlabel('Amount of jobs')
autolabel_h(ax)
plt.gcf().subplots_adjust(left=0.20)
return fig
示例3: toggle_artist
def toggle_artist(self, artist):
try:
visible = artist.get_visible()
artist.set_visible(not visible)
plt.gcf().canvas.draw()
except Exception:
pass
示例4: createHistogram
def createHistogram(df, pic, bins=45, rates=False):
data=mergeMatrix(df, pic)
matrix=sortMatrix(df, pic)
density = gaussian_kde(data)
xs = np.linspace(min(data), max(data), max(data))
density.covariance_factor = lambda : .25
density._compute_covariance()
#xs = np.linspace(min(data), max(data), 1000)
fig,ax1 = plt.subplots()
#plt.xlim([0, 4000])
plt.hist(data, bins=bins, range=[-500, 4000], histtype='stepfilled', color='grey', alpha=0.5)
lims = plt.ylim()
height=lims[1]-2
for i in range(0,len(matrix)):
currentRow = matrix[i][np.nonzero(matrix[i])]
plt.plot(currentRow, np.ones(len(currentRow))*height, '|', color='black')
height -= 2
plt.axvline(x=0, color='red', linestyle='dashed')
#plt.axvline(x=1000, color='black', linestyle='dashed')
#plt.axvline(x=2000, color='black', linestyle='dashed')
#plt.axvline(x=3000, color='black', linestyle='dashed')
if rates:
rates = get_rate(df, pic)
ax1.text(-250, 4, str(rates[0]), size=15, ha='center', va='center', color='green')
ax1.text(500, 4, str(rates[1]), size=15, ha='center', va='center', color='green')
ax1.text(1500, 4, str(rates[2]), size=15, ha='center', va='center', color='green')
ax1.text(2500, 4, str(rates[3]), size=15, ha='center', va='center', color='green')
ax1.text(3500, 4, str(rates[4])+ r' $\frac{\mathsf{Spikes}}{\mathsf{s}}$', size=15, ha='center', va='center', color='green')
plt.ylim([0,lims[1]+5])
plt.xlim([0, 4000])
plt.title('Histogram for ' + str(pic))
ax1.set_xticklabels([-500, 'Start\nStimulus', 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000])
plt.xlabel('Time (ms)')
plt.ylabel('Counts (Spikes)')
print lims
arr_hand = getPic(pic)
imagebox = OffsetImage(arr_hand, zoom=.3)
xy = [3200, lims[1]+5] # coordinates to position this image
ab = AnnotationBbox(imagebox, xy, xybox=(30., -30.), xycoords='data',boxcoords="offset points")
ax1.add_artist(ab)
ax2 = ax1.twinx() #Necessary for multiple y-axes
#Use ax2.plot to draw the hypnogram. Be sure your x values are in seconds
ax2.plot(xs, density(xs) , 'g', drawstyle='steps')
plt.ylim([0,0.001])
plt.yticks([0.0001,0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007, 0.0008, 0.0009])
ax2.set_yticklabels([1,2,3,4, 5, 6, 7, 8, 9])
plt.ylabel(r'Density ($\cdot \mathsf{10^{-4}}$)', color='green')
plt.gcf().subplots_adjust(right=0.89)
plt.gcf().subplots_adjust(bottom=0.2)
plt.savefig(pic, dpi=150)
示例5: plot_event_histogram
def plot_event_histogram(events, plot_type):
from matplotlib.dates import date2num, num2date
from matplotlib import ticker
plt.figure(figsize=(12, 4))
values = []
for event in events:
if plot_type == "depth":
values.append(event["depth_in_km"])
elif plot_type == "time":
values.append(date2num(event["origin_time"].datetime))
plt.hist(values, bins=250)
if plot_type == "time":
plt.gca().xaxis.set_major_formatter(ticker.FuncFormatter(
lambda numdate, _: num2date(numdate).strftime('%Y-%d-%m')))
plt.gcf().autofmt_xdate()
plt.xlabel("Origin time (UTC)")
plt.title("Origin time distribution (%i events)" % len(events))
elif plot_type == "depth":
plt.xlabel("Event depth in km")
plt.title("Hypocenter depth distribution (%i events)" % len(events))
plt.tight_layout()
示例6: existe_croche_bas
def existe_croche_bas(img,ecart,i,j):
somme = 0
rep = 0
ecart = int(round(ecart))
e2 = int(round(ecart/2))
for x in range(i-e2,i):
for y in range(j-e2,j):
if x < img.shape[0] and y < img.shape[1]:
if img[x][y] == 0:
somme = 1 + somme
if somme*100 >= pc_cro*e2*e2:
p = plt2.Rectangle((j-e2,i-e2),e2,e2,color='b')
plt2.gcf().gca().add_artist(p)
rep = 1
else:
somme = 0
for x in range(i-e2,i):
for y in range(j,j+e2):
if x < img.shape[0] and y < img.shape[1]:
if img[x][y] == 0:
somme = 1 + somme
if somme*100 >= pc_cro*e2*e2:
p = plt2.Rectangle((j-e2,i-e2),e2,e2,color='b')
plt2.gcf().gca().add_artist(p)
rep = 1
return rep
示例7: run_mag_test
def run_mag_test(fld, title="", show=False):
vx, vy, vz = fld.component_views() # pylint: disable=W0612
vx, vy, vz = fld.component_fields()
try:
t0 = time()
mag_ne = viscid.magnitude(fld, preferred="numexpr", only=False)
t1 = time()
logger.info("numexpr mag runtime: %g", t1 - t0)
except viscid.verror.BackendNotFound:
xfail("Numexpr is not installed")
planes = ["z=0", "y=0"]
nrows = 4
ncols = len(planes)
_, axes = plt.subplots(nrows, ncols, sharex=True, sharey=True, squeeze=False)
for ind, p in enumerate(planes):
vlt.plot(vx, p, ax=axes[0, ind], show=False)
vlt.plot(vy, p, ax=axes[1, ind], show=False)
vlt.plot(vz, p, ax=axes[2, ind], show=False)
vlt.plot(mag_ne, p, ax=axes[3, ind], show=False)
plt.suptitle(title)
vlt.auto_adjust_subplots(subplot_params=dict(top=0.9, right=0.9))
plt.gcf().set_size_inches(6, 7)
plt.savefig(next_plot_fname(__file__))
if show:
vlt.mplshow()
示例8: beautify
def beautify():
"""Format the figure of the run length distribution.
Used in conjunction with plot method (obsolete/outdated, see functions ``beautifyFVD`` and ``beautifyRLD``).
"""
# raise NotImplementedError('this implementation is obsolete')
plt.subplot(121)
axisHandle = plt.gca()
axisHandle.set_xscale('log')
axisHandle.set_xlabel('log10 of FEvals / DIM')
axisHandle.set_ylabel('proportion of trials')
# Grid options
logxticks()
beautifyECDF()
plt.subplot(122)
axisHandle = plt.gca()
axisHandle.set_xscale('log')
xmin, fmax = plt.xlim()
plt.xlim(1., fmax)
axisHandle.set_xlabel('log10 of Df / Dftarget')
beautifyECDF()
logxticks()
axisHandle.set_yticklabels(())
plt.gcf().set_size_inches(16.35, 6.175)
示例9: main
def main():
plt.figure(figsize=[8, 8])
ax = plt.axes(projection=ccrs.SouthPolarStereo())
ax.coastlines()
ax.gridlines()
im = ax.stock_img()
def on_draw(event=None):
"""
Hooks into matplotlib's event mechanism to define the clip path of the
background image.
"""
# Clip the image to the current background boundary.
im.set_clip_path(ax.background_patch.get_path(), transform=ax.background_patch.get_transform())
# Register the on_draw method and call it once now.
plt.gcf().canvas.mpl_connect("draw_event", on_draw)
on_draw()
# Generate a matplotlib path representing the character "C".
fp = FontProperties(family="Bitstream Vera Sans", weight="bold")
logo_path = matplotlib.textpath.TextPath((-4.5e7, -3.7e7), "C", size=1, prop=fp)
# Scale the letter up to an appropriate X and Y scale.
logo_path._vertices *= np.array([103250000, 103250000])
# Add the path as a patch, drawing black outlines around the text.
patch = matplotlib.patches.PathPatch(
logo_path, facecolor="white", edgecolor="black", linewidth=10, transform=ccrs.SouthPolarStereo()
)
ax.add_patch(patch)
plt.show()
示例10: test_plot_tfr_topomap
def test_plot_tfr_topomap():
"""Test plotting of TFR data
"""
import matplotlib as mpl
import matplotlib.pyplot as plt
raw = _get_raw()
times = np.linspace(-0.1, 0.1, 200)
n_freqs = 3
nave = 1
rng = np.random.RandomState(42)
data = rng.randn(len(raw.ch_names), n_freqs, len(times))
tfr = AverageTFR(raw.info, data, times, np.arange(n_freqs), nave)
tfr.plot_topomap(ch_type="mag", tmin=0.05, tmax=0.150, fmin=0, fmax=10, res=16)
eclick = mpl.backend_bases.MouseEvent("button_press_event", plt.gcf().canvas, 0, 0, 1)
eclick.xdata = 0.1
eclick.ydata = 0.1
eclick.inaxes = plt.gca()
erelease = mpl.backend_bases.MouseEvent("button_release_event", plt.gcf().canvas, 0.9, 0.9, 1)
erelease.xdata = 0.3
erelease.ydata = 0.2
pos = [[0.11, 0.11], [0.25, 0.5], [0.0, 0.2], [0.2, 0.39]]
_onselect(eclick, erelease, tfr, pos, "mag", 1, 3, 1, 3, "RdBu_r", list())
tfr._onselect(eclick, erelease, None, "mean", None)
plt.close("all")
示例11: plot
def plot(self):
self.artists = []
axis = plt.subplot(111)
for i, plot_inst in enumerate(sorted(self.plot_instances, key=lambda pi: pi.sort_order)):
self.artists.extend(plot_inst.plot(axis, i))
self.print_shortcuts()
axis.set_xlabel('time')
axis.set_xticklabels(axis.get_xticks(), rotation=90, fontsize=10)
axis.xaxis.set_major_formatter(DateFormatter('%b %d\n%H:%M:%S'))
for label in axis.get_xticklabels(): # make the xtick labels pickable
label.set_picker(True)
# log y axis
if self.args['log']:
axis.set_yscale('log')
axis.set_ylabel('query duration in ms (log scale)')
else:
axis.set_ylabel('query duration in ms')
handles, labels = axis.get_legend_handles_labels()
if len(labels) > 0:
self.legend = axis.legend(loc='upper left', frameon=False, numpoints=1, fontsize=9)
plt.gcf().canvas.mpl_connect('pick_event', self.onpick)
plt.gcf().canvas.mpl_connect('key_press_event', self.onpress)
plt.show()
示例12: update
def update(frame_number):
plt.cla()
if map_msg is not None:
for lane in map_msg.hdmap.lane:
draw_lane_boundary(lane, ax, 'b', map_msg.lane_marker)
draw_lane_central(lane, ax, 'r')
for key in map_msg.navigation_path:
x = []
y = []
for point in map_msg.navigation_path[key].path.path_point:
x.append(point.y)
y.append(point.x)
ax.plot(x, y, ls='-', c='g', alpha=0.3)
if planning_msg is not None:
x = []
y = []
for tp in planning_msg.trajectory_point:
x.append(tp.path_point.y)
y.append(tp.path_point.x)
ax.plot(x, y, ls=':', c='r', linewidth=5.0)
ax.axvline(x=0.0, alpha=0.3)
ax.axhline(y=0.0, alpha=0.3)
ax.set_xlim([10, -10])
ax.set_ylim([-10, 200])
y = 10
while y < 200:
ax.plot([10, -10], [y, y], ls='-', c='g', alpha=0.3)
y = y + 10
plt.yticks(np.arange(10, 200, 10))
adc = plt.Circle((0, 0), 0.3, color='r')
plt.gcf().gca().add_artist(adc)
ax.relim()
示例13: plot_scatter
def plot_scatter(points, rects, level_id, fig_area=FIG_AREA, grid_area=GRID_AREA, with_axis=False, with_img=True, img_alpha=1.0):
rect = rects[level_id]
top_lat, top_lng, bot_lat, bot_lng = get_rect_bounds(rect)
plevel = get_points_level(points, rects, level_id)
ax = plevel.plot('lng', 'lat', 'scatter')
plt.xlim(left=top_lng, right=bot_lng)
plt.ylim(top=top_lat, bottom=bot_lat)
if with_img:
img = plt.imread('/data/images/level%s.png' % level_id)
plt.imshow(img, zorder=0, alpha=img_alpha, extent=[top_lng, bot_lng, bot_lat, top_lat])
width, height = get_rect_width_height(rect)
fig_width, fig_height = get_fig_width_height(width, height, fig_area)
plt.gcf().set_size_inches(fig_width, fig_height)
if grid_area:
grid_horiz, grid_vertic = get_grids(rects, level_id, grid_area, fig_area)
for lat in grid_horiz:
plt.axhline(lat, color=COLOR_GRID, lw=GRID_LW)
for lng in grid_vertic:
plt.axvline(lng, color=COLOR_GRID, lw=GRID_LW)
if not with_axis:
ax.set_axis_off()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
return ax
示例14: main
def main():
start = datetime(2006, 1, 1, 0, 0, 0, 0, pytz.utc)
end = datetime(2014, 8, 25, 0, 0, 0, 0, pytz.utc)
data = zp.utils.factory.load_bars_from_yahoo(stocks=[stock],
start=start,
end=end,
adjusted=True)
algo = MyAlgo()
perf = algo.run(data)
fig = plt.figure()
ax1 = fig.add_subplot(211, ylabel='Price in $')
data[stock]['close'].plot(ax=ax1, color='r', lw=2.)
perf[['short_ma', 'long_ma']].plot(ax=ax1, lw=2.)
ax1.plot(perf.ix[perf.buy].index, perf.short_ma[perf.buy],
'^', markersize=10, color='m')
ax1.plot(perf.ix[perf.sell].index, perf.short_ma[perf.sell],
'v', markersize=10, color='k')
ax2 = fig.add_subplot(212, ylabel='Portfolio value in $')
perf.portfolio_value.plot(ax=ax2, lw=2.)
ax2.plot(perf.ix[perf.buy].index, perf.portfolio_value[perf.buy],
'^', markersize=10, color='m')
ax2.plot(perf.ix[perf.sell].index, perf.portfolio_value[perf.sell],
'v', markersize=10, color='k')
plt.legend(loc=0)
plt.gcf().set_size_inches(14, 10)
plt.show()
示例15: plot
def plot( name, data ) :
dates = data["date"]
times = data["time"]
ddiff = max(dates)-min(dates)
plt.close()
plt.figure()
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%b-%d %X'))
# set x-axis scale
if ddiff.days > 60 :
plt.gca().xaxis.set_major_locator(mdates.MonthLocator())
elif ddiff.days > 2 :
plt.gca().xaxis.set_major_locator(mdates.DayLocator())
else :
plt.gca().xaxis.set_major_locator(mdates.HourLocator())
plt.plot( dates, times, 'bo-' )
plt.gcf().autofmt_xdate()
plt.title( name )
plt.xlabel( "Date" )
plt.ylabel( "Time (s)" )
plt.grid(True)
plt.setp(plt.gca().get_xmajorticklabels(), size=6,rotation=30)
# plt.show()
plt.savefig( name )