当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.gca函数代码示例

本文整理汇总了Python中matplotlib.pyplot.gca函数的典型用法代码示例。如果您正苦于以下问题:Python gca函数的具体用法?Python gca怎么用?Python gca使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了gca函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: save_scatter

        def save_scatter(data, colours, title, ylabel, savePath, yLimTuple=None):
            fig = plt.figure()
            ax = fig.add_subplot(111)
            plt.title(title)
            plt.xlabel("Trials")
            plt.ylabel(ylabel)

            # Sort by value
            data, colours = zip(*sorted(zip(data, colours)))

            nov_data = [(i, d) for (i, d, c) in zip(range(len(data)), data, colours) if c == "r"]
            inter_data = [(i, d) for (i, d, c) in zip(range(len(data)), data, colours) if c == "g"]
            exp_data = [(i, d) for (i, d, c) in zip(range(len(data)), data, colours) if c == "b"]

            nov = ax.scatter(zip(*nov_data)[0], zip(*nov_data)[1], color="r", marker="o", s=60)
            inter = ax.scatter(zip(*inter_data)[0], zip(*inter_data)[1], color="g", marker="^", s=60)
            exp = ax.scatter(zip(*exp_data)[0], zip(*exp_data)[1], color="b", marker="*", s=60)

            plt.legend((nov, inter, exp), ["Novice", "Intermediate", "Expert"], loc=2)
            plt.xticks([])
            plt.gca().set_xlim(-1, len(data))
            if yLimTuple:
                plt.gca().set_xlim(yLimTuple)
            plt.tight_layout()
            with open(savePath, "w") as figOut:
                plt.savefig(figOut)
开发者ID:robevans,项目名称:minf,代码行数:26,代码来源:laparoscopy_performance.py

示例2: vis_all_detection

def vis_all_detection(im_array, detections, imdb_classes=None, thresh=0.):
    """
    visualize all detections in one image
    :param im_array: [b=1 c h w] in rgb
    :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
    :param imdb_classes: list of names in imdb
    :param thresh: threshold for valid detections
    :return:
    """
    import matplotlib.pyplot as plt
    import random
    im = image_processing.transform_inverse(im_array, config.PIXEL_MEANS)
    plt.imshow(im)
    for j in range(1, len(imdb_classes)):
        color = (random.random(), random.random(), random.random())  # generate a random color
        dets = detections[j]
        for i in range(dets.shape[0]):
            bbox = dets[i, :4]
            score = dets[i, -1]
            if score > thresh:
                rect = plt.Rectangle((bbox[0], bbox[1]),
                                     bbox[2] - bbox[0],
                                     bbox[3] - bbox[1], fill=False,
                                     edgecolor=color, linewidth=2)
                plt.gca().add_patch(rect)
                plt.gca().annotate('{} {:.3f}'.format(imdb_classes[j], score),
                                   rect.get_xy(), color='w')
    plt.show()
开发者ID:1132520084,项目名称:mxnet,代码行数:28,代码来源:tester.py

示例3: test_simple

    def test_simple(self):
        # First sub-plot
        plt.subplot(221)
        plt.title('Default')
        iplt.contourf(self.cube)
        plt.gca().coastlines()

        # Second sub-plot
        plt.subplot(222, projection=ccrs.Mollweide(central_longitude=120))
        plt.title('Molleweide')
        iplt.contourf(self.cube)
        plt.gca().coastlines()

        # Third sub-plot (the projection part is redundant, but a useful
        # test none-the-less)
        ax = plt.subplot(223, projection=iplt.default_projection(self.cube))
        plt.title('Native')
        iplt.contour(self.cube)
        ax.coastlines()

        # Fourth sub-plot
        ax = plt.subplot(2, 2, 4, projection=ccrs.PlateCarree())
        plt.title('PlateCarree')
        iplt.contourf(self.cube)
        ax.coastlines()

        self.check_graphic()
开发者ID:bamundi,项目名称:iris,代码行数:27,代码来源:test_mapping.py

示例4: plot

 def plot(self):
     if self.pos == None:
         self.pos = nx.graphviz_layout(self)
     NODE_SIZE = 500
     plt.clf()
     nx.draw_networkx_nodes(self, pos=self.pos,
                            nodelist=self.normal,
                            node_color=NORMAL_COLOR,
                            node_size=NODE_SIZE)
     nx.draw_networkx_nodes(self, pos=self.pos,
                            nodelist=self.contam,
                            node_color=CONTAM_COLOR,
                            node_size=NODE_SIZE)
     nx.draw_networkx_nodes(self, pos=self.pos,
                            nodelist=self.immune,
                            node_color=IMMUNE_COLOR,
                            node_size=NODE_SIZE)
     nx.draw_networkx_nodes(self, pos=self.pos,
                            nodelist=self.dead,
                            node_color=DEAD_COLOR,
                            node_size=NODE_SIZE)
     nx.draw_networkx_edges(self, pos=self.pos,
                            edgelist=self.nondead_edges(),
                            width=2,
                            edge_color='0.2')
     nx.draw_networkx_labels(self, pos=self.pos,
                             font_color='0.95', font_size=11)
     plt.gca().get_xaxis().set_visible(False)
     plt.gca().get_yaxis().set_visible(False)
     plt.draw()
开发者ID:3lectrologos,项目名称:sna,代码行数:30,代码来源:diffuse.py

示例5: _plot

def _plot(x, Y, file_name):
	title = file_name.replace('_', ' ').upper()
	fig = plt.figure(figsize=(8,4))
	ax = fig.add_subplot(111)
	plt.subplots_adjust(left=0.075, right=0.96, top=0.92, bottom=0.08)
	#ax.set_autoscaley_on(False)
	#ax.set_ylim([0,0.1])
	ax.set_xlim(0, RANGE[1])
	
	powerlaw = lambda x, amp, index: amp * (x**index)
	for y in Y:
		day, region = y
		amp, index = DATA[day][region]
		label = '{region} ({day})'.format(day=day, region=region).upper()
		ax.plot(x, powerlaw(x, amp, index), label=label, linewidth=1, color=COLORS[region], alpha=0.95, linestyle=LINESTYLE[day])
	
	formatter = FuncFormatter(lambda v, pos: str(round(v*100, 2))+'%')
	plt.gca().yaxis.set_major_formatter(formatter)
	formatter = FuncFormatter(lambda v, pos: '' if v/1000 == 0 else str(int(v/1000))+'km')
	plt.gca().xaxis.set_major_formatter(formatter)
	ax.set_title(title, fontsize=11)
	ax.legend(fontsize=10)

	if not os.path.exists('data/' + my.DATA_FOLDER + 'disp_stat/'):
		os.makedirs('data/' + my.DATA_FOLDER + 'disp_stat/')
	plt.savefig('data/' + my.DATA_FOLDER + 'disp_stat/' + file_name + '.png')
	print 'Stored chart: %s' % file_name
开发者ID:nbir,项目名称:gambit-scripts,代码行数:27,代码来源:disp_combined.py

示例6: main

def main():
    fname = iris.sample_data_path('ostia_monthly.nc')
    
    # load a single cube of surface temperature between +/- 5 latitude
    cube = iris.load_cube(fname, iris.Constraint('surface_temperature', latitude=lambda v: -5 < v < 5))
    
    # Take the mean over latitude
    cube = cube.collapsed('latitude', iris.analysis.MEAN)
    
    # Now that we have our data in a nice way, lets create the plot
    # contour with 20 levels
    qplt.contourf(cube, 20)
    
    # Put a custom label on the y axis 
    plt.ylabel('Time / years')
    
    # Stop matplotlib providing clever axes range padding
    plt.axis('tight')
    
    # As we are plotting annual variability, put years as the y ticks
    plt.gca().yaxis.set_major_locator(mdates.YearLocator())
    
    # And format the ticks to just show the year
    plt.gca().yaxis.set_major_formatter(mdates.DateFormatter('%Y'))
    
    plt.show()
开发者ID:RachelNorth,项目名称:iris,代码行数:26,代码来源:hovmoller.py

示例7: test_plot_tmerc

 def test_plot_tmerc(self):
     filename = tests.get_data_path(('NetCDF', 'transverse_mercator',
                                     'tmean_1910_1910.nc'))
     self.cube = iris.load_cube(filename)
     iplt.pcolormesh(self.cube[0])
     plt.gca().coastlines()
     self.check_graphic()
开发者ID:QuLogic,项目名称:iris,代码行数:7,代码来源:test_plot.py

示例8: main

def main():
    fig,ax=plt.subplots()
    ax.set_xlim([-0.5,2.5])
    ax.set_ylim([-0.5,2.5])
    deg=0
    A=rot(-deg)@[email protected]([[np.sqrt(2),0],[0,1]])@rot(deg)
    xy1=np.array([1,0])
    transxy1=trans(A,xy1)
    xy2=np.array([0,1])
    transxy2=trans(A,xy2)
    xy3=np.array([1,1])
    transxy3=trans(A,xy3)
    xy4=trans(rot(30),np.array([1,0]))
    transxy4=trans(A,xy4)

    plot_vector(ax,xy1,color=0.1)
    plot_vector(ax,transxy1,color=0.1)
    plot_vector(ax,xy2,color=0.2)
    plot_vector(ax,transxy2,color=0.2)
    plot_vector(ax,xy3,color=0.3)
    plot_vector(ax,transxy3,color=0.3)
    plot_vector(ax,xy4,color=0.4)
    plot_vector(ax,transxy4,color=0.4)
    plt.gca().set_aspect('equal', adjustable='box')
    plt.show()
开发者ID:terasakisatoshi,项目名称:PythonCode,代码行数:25,代码来源:rotate_image.py

示例9: plot_bold_signal

def plot_bold_signal(timeseries, x, y):
	# plots timeseries of two given nodes in a specific time interval
	
	v1  = timeseries[:, x]
	v2  = timeseries[:, y]
	
	T   = len(v1)	
	time = np.linspace(0, T-1, T) / float(60000)
	
	[R_pearson , p_value] = sistat.pearsonr(v1 , v2)
	
	## if the given signal downsampled :
	#time_bds = np.arange(0,  530,  float(530)/len(v1) )/float(60)
	#pl.plot(time_bds, v1, 'r',label=('node '+str(x)))
	#pl.plot(time_bds, v2, 'b',label=('node '+str(y)))
	
	# if no downsampling :

	fig , ax = pl.subplots(figsize=(25, 5.5))
	pl.subplots_adjust(left=0.08, right=0.98, top=0.94, bottom=0.20)

	pl.plot(time, v1, 'm', label=('$u_{' + str(x+1) + '}(t)$'))
	pl.plot(time, v2, 'g', label=('$u_{' + str(y+1) + '}(t)$'))
	pl.setp(pl.gca().get_xticklabels(), fontsize = 30)
	pl.setp(pl.gca().get_yticklabels(), fontsize = 30)
	
	#ax.set_ylim(-v2.max()-0.05, v2.max()+0.05)
	ax.set_ylim(-0.6, 0.6)
	
	pl.legend(prop={'size':35})

	pl.xlabel('t [min]', fontsize=30)
	pl.ylabel('BOLD % change' ,fontsize=40)
	
	return	
开发者ID:rudimeier,项目名称:MSc_Thesis,代码行数:35,代码来源:correlate_bold.py

示例10: groupHourly

def groupHourly(dataGroup, names, title, timeShift, stacked=True,show=True):
    plt.gca()
    toPlot = []
    namesShown = []
    for pos in range(len(dataGroup)):
    #for dataIn in dataGroup:
        if len(dataGroup[pos]['data']) > 0:
            data = truncData(dataGroup[pos]['data'],"hour")
            dates = data['created_at']
            dates = [parser.parse(date) for date in dates]
            hour_list = [(t+timedelta(hours=timeShift)).hour for t in dates]
            toPlot.append(hour_list)
            namesShown.append(names[pos])
            numbers=[x for x in xrange(0,25)]
            labels=map(lambda x: str(x), numbers)
            plt.xticks(numbers, labels)
            plt.xlabel("Hour (GMT %s)" % timeShift)
            plt.ylabel("Tweets")
    if len(namesShown) != 0:
        plt.title(title,size = 12)
        plt.hist(toPlot,bins=numbers,stacked=stacked, alpha=0.5, label=names, align='mid')
        plt.legend(namesShown,"best")
        if show:
            plt.show()
    return plt
开发者ID:jschlitt84,项目名称:visualization,代码行数:25,代码来源:CGVis.py

示例11: test_ts_plot_format_coord

    def test_ts_plot_format_coord(self):
        def check_format_of_first_point(ax, expected_string):
            first_line = ax.get_lines()[0]
            first_x = first_line.get_xdata()[0].ordinal
            first_y = first_line.get_ydata()[0]
            try:
                self.assertEqual(expected_string,
                                 ax.format_coord(first_x, first_y))
            except (ValueError):
                raise nose.SkipTest("skipping test because issue forming "
                                    "test comparison GH7664")

        annual = Series(1, index=date_range('2014-01-01', periods=3,
                                            freq='A-DEC'))
        check_format_of_first_point(annual.plot(), 't = 2014  y = 1.000000')

        # note this is added to the annual plot already in existence, and
        # changes its freq field
        daily = Series(1, index=date_range('2014-01-01', periods=3, freq='D'))
        check_format_of_first_point(daily.plot(),
                                    't = 2014-01-01  y = 1.000000')
        tm.close()

        # tsplot
        import matplotlib.pyplot as plt
        from pandas.tseries.plotting import tsplot
        tsplot(annual, plt.Axes.plot)
        check_format_of_first_point(plt.gca(), 't = 2014  y = 1.000000')
        tsplot(daily, plt.Axes.plot)
        check_format_of_first_point(plt.gca(), 't = 2014-01-01  y = 1.000000')
开发者ID:RahulHP,项目名称:pandas,代码行数:30,代码来源:test_plotting.py

示例12: plot_fgmax_grid

def plot_fgmax_grid():

    fg = fgmax_tools.FGmaxGrid()
    fg.read_input_data('fgmax_grid1.txt')
    fg.read_output()

    #clines_zeta = [0.01] + list(numpy.linspace(0.05,0.3,6)) + [0.5,1.0,10.0]
    clines_zeta = [0.001] + list(numpy.linspace(0.05,0.25,10))
    colors = geoplot.discrete_cmap_1(clines_zeta)
    plt.figure(1)
    plt.clf()
    zeta = numpy.where(fg.B>0, fg.h, fg.h+fg.B)   # surface elevation in ocean
    plt.contourf(fg.X,fg.Y,zeta,clines_zeta,colors=colors)
    plt.colorbar()
    plt.contour(fg.X,fg.Y,fg.B,[0.],colors='k')  # coastline

    # plot arrival time contours and label:
    arrival_t = fg.arrival_time/3600.  # arrival time in hours
    #clines_t = numpy.linspace(0,8,17)  # hours
    clines_t = numpy.linspace(0,2,5)  # hours
    #clines_t_label = clines_t[::2]  # which ones to label 
    clines_t_label = clines_t[::1]  # which ones to label 
    clines_t_colors = ([.5,.5,.5],)
    con_t = plt.contour(fg.X,fg.Y,arrival_t, clines_t,colors=clines_t_colors) 
    plt.clabel(con_t, clines_t_label)

    # fix axes:
    plt.ticklabel_format(format='plain',useOffset=False)
    plt.xticks(rotation=20)
    plt.gca().set_aspect(1./numpy.cos(fg.Y.mean()*numpy.pi/180.))
    plt.title("Maximum amplitude / arrival times (hrs)")
开发者ID:mjberger,项目名称:asteroidTsunami,代码行数:31,代码来源:plot_fgmax.py

示例13: _plot_matplotlib

def _plot_matplotlib(obj, mesh, kwargs):
    # Avoid importing until used
    import matplotlib.pyplot as plt

    gdim = mesh.geometry().dim()
    if gdim == 3 or kwargs.get("mode") in ("warp",):
        # Importing this toolkit has side effects enabling 3d support
        from mpl_toolkits.mplot3d import axes3d
        # Enabling the 3d toolbox requires some additional arguments
        ax = plt.gca(projection='3d')
    else:
        ax = plt.gca()
    ax.set_aspect('equal')

    title = kwargs.pop("title", None)
    if title is not None:
        ax.set_title(title)

    if isinstance(obj, cpp.Function):
        return mplot_function(ax, obj, **kwargs)
    elif isinstance(obj, cpp.Expression):
        return mplot_expression(ax, obj, mesh, **kwargs)
    elif isinstance(obj, cpp.Mesh):
        return mplot_mesh(ax, obj, **kwargs)
    elif isinstance(obj, cpp.DirichletBC):
        return mplot_dirichletbc(ax, obj, **kwargs)
    elif isinstance(obj, _meshfunction_types):
        return mplot_meshfunction(ax, obj, **kwargs)
    else:
        raise AttributeError('Failed to plot %s' % type(obj))
开发者ID:MollyRaver,项目名称:dolfin,代码行数:30,代码来源:plotting.py

示例14: update_figures

    def update_figures(self):
        plt.figure(self.figure.number)
        x = np.arange(self.data.min(), self.data.max())#, (self.data.max() - self.data.min()) / 100)  # artificial x-axis
        # self.figure.gca().cla()  # clearing the figure, just to be sure

        # plt.subplot(411)
        plt.plot(self.bins, self.hist, 'k')
        plt.hold(True)
        # if self.rv_heal is not None and self.rv_hypo is not None and self.rv_hyper is not None:
        if self.models is not None:
            healthy_y = self.rv_heal.pdf(x)
            if self.unaries_as_cdf:
                hypo_y = (1 - self.rv_hypo.cdf(x)) * self.rv_heal.pdf(self.rv_heal.mean())
                hyper_y = self.rv_hyper.cdf(x) * self.rv_heal.pdf(self.rv_heal.mean())
            else:
                hypo_y = self.rv_hypo.pdf(x)
                hyper_y = self.rv_hyper.pdf(x)
            y_max = max(healthy_y.max(), hypo_y.max(), hyper_y.max())
            fac = self.hist.max() / y_max

            plt.plot(x, fac * healthy_y, 'g', linewidth=2)
            plt.plot(x, fac * hypo_y, 'b', linewidth=2)
            plt.plot(x, fac * hyper_y, 'r', linewidth=2)
        if self.params and self.params.has_key('win_level') and self.params.has_key('win_width'):
            ax = plt.axis()
            border = 5
            xmin = self.params['win_level'] - self.params['win_width'] / 2 - border
            xmax = self.params['win_level'] + self.params['win_width'] / 2 + border
            plt.axis([xmin, xmax, ax[2], ax[3]])
        plt.gca().tick_params(direction='in', pad=1)
        plt.hold(False)
        # plt.grid(True)

        self.canvas.draw()
开发者ID:mazoku,项目名称:lesion_editor,代码行数:34,代码来源:hist_widget.py

示例15: el_plot

def el_plot(data, Map=False, show=True):
    """
    Plot the elevation for the region from the last time series
    
    :Parameters:
        **data** -- the standard python data dictionary
        
        **Map** -- {True, False} (optional): Optional argument.  If True,
            the elevation will be plotted on a map.  
    """
    trigrid = data['trigrid']
    plt.gca().set_aspect('equal')
    plt.tripcolor(trigrid, data['zeta'][-1,:])
    plt.colorbar()
    plt.title("Elevation")
    if Map:
        #we set the corners of where the map should show up
        llcrnrlon, urcrnrlon = plt.xlim()
        llcrnrlat, urcrnrlat = plt.ylim()
        #we construct the map.  Note that resolution serves to increase
        #or decrease the detail in the coastline.  Currently set to 
        #'i' for 'intermediate'
        m = Basemap(llcrnrlon, llcrnrlat, urcrnrlon, urcrnrlat, \
            resolution='i', suppress_ticks=False)
        #set color for continents.  Default is grey.
        m.fillcontinents(color='ForestGreen')
        m.drawmapboundary()
        m.drawcoastlines()
    if show:
        plt.show()
开发者ID:RobieH,项目名称:Karsten-datatools,代码行数:30,代码来源:plottools.py


注:本文中的matplotlib.pyplot.gca函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。