当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.fill_betweenx函数代码示例

本文整理汇总了Python中matplotlib.pyplot.fill_betweenx函数的典型用法代码示例。如果您正苦于以下问题:Python fill_betweenx函数的具体用法?Python fill_betweenx怎么用?Python fill_betweenx使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了fill_betweenx函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_xy

    def plot_xy(self, x, y, xerror=[], yerror=[], title=' ', xLabel=' ', yLabel=' '):
        """
        Simple X vs Y plot

        Inputs:
        ------
          - x = 1D array
          - y = 1D array

        Keywords:
        --------
          - xerror = error on 'x', 1D array
          - yerror = error on 'y', 1D array
          - title = plot title, string
          - xLabel = title of the x-axis, string
          - yLabel = title of the y-axis, string
        """
        fig = plt.figure(figsize=(18,10))
        plt.rc('font',size='22')
        self._fig = plt.plot(x, y, label=title)
        scale = 1
        ticks = ticker.FuncFormatter(lambda lon, pos: '{0:g}'.format(lon/scale))
        plt.ylabel(yLabel)
        plt.xlabel(xLabel)
        if not yerror==[]:
            #plt.errorbar(x, y, yerr=yerror, fmt='o', ecolor='k')
            plt.fill_between(x, y-yerror, y+yerror,
            alpha=0.2, edgecolor='#1B2ACC', facecolor='#089FFF', antialiased=True)
        if not xerror==[]:
            #plt.errorbar(x, y, xerr=xerror, fmt='o', ecolor='k')
            plt.fill_betweenx(y, x-xerror, x+xerror,
            alpha=0.2, edgecolor='#1B2ACC', facecolor='#089FFF', antialiased=True)

        plt.show() 
开发者ID:LaVieEnRoux,项目名称:PySeidon,代码行数:34,代码来源:plotsAdcp.py

示例2: plot_wiggle

def plot_wiggle(self,figsize=[5,10],fill=True,perc=100,scale=1,subplot=False):
	# plot wiggle traces
	# figsize=[5,10]: matplotlib figure size [inch]
	# fill=True: fill values greater than zero
	# perc=100: percent clip
	# scale=1: scale trace plots
	plotdata=self.data
	plotdata=perc_clip(plotdata,perc)
	print("min=%s max=%s"%(plotdata.min(),plotdata.max()))
	maxval=np.abs(plotdata).max()
	ns=pk.get_ns(self)
	dt=pk.get_dt(self)
	ntr=pk.get_ntr(self)
	t=np.arange(ns)*dt

	if not subplot: plt.figure(figsize=figsize)
	for itr in range(ntr):
		trace=plotdata[itr,:]
		x=itr+trace/maxval*scale
		plt.plot(x,t,'k-',linewidth=0.5)
		if fill: plt.fill_betweenx(t,x,itr,where=x>itr,color='black',linewidth=0.)

	plt.xlim([-2,ntr+1])
	plt.ylim([t[-1],t[0]])
	plt.gca().xaxis.tick_top()
	plt.gca().xaxis.set_label_position('top')
	if subplot: return
	plt.xlabel('Trace number',fontsize='large')
	plt.ylabel('Time (s)',fontsize='large')
开发者ID:pkgpl,项目名称:IPythonProcessing,代码行数:29,代码来源:pkplot.py

示例3: plot_vawig

def plot_vawig(axhdl, data, t, excursion):

    import numpy as np
    import matplotlib.pyplot as plt

    [ntrc, nsamp] = data.shape
    

    
    
    t = np.hstack([0, t, t.max()])
    
    for i in range(0, ntrc):
        tbuf = excursion * data[i,:] / np.max(np.abs(data)) + i
        
        tbuf = np.hstack([i, tbuf, i])
            
        axhdl.plot(tbuf, t, color='black', linewidth=0.5)
        plt.fill_betweenx(t, tbuf, i, where=tbuf>i, facecolor=[0.6,0.6,1.0], linewidth=0)
        plt.fill_betweenx(t, tbuf, i, where=tbuf<i, facecolor=[1.0,0.7,0.7], linewidth=0)
    
    axhdl.set_xlim((-excursion, ntrc+excursion))
    axhdl.xaxis.tick_top()
    axhdl.xaxis.set_label_position('top')
    axhdl.invert_yaxis()
开发者ID:soldfield,项目名称:tutorials-2014,代码行数:25,代码来源:tuning_prestack_v2.py

示例4: plot_fill

def plot_fill(llr_cur, tkey, asimov_llr, hist_vals, bincen, fit_gauss, **kwargs):
    """
    Plots fill between the asimov llr value and the histogram values
    which represent an LLR distribution.
    """
    validate_key(tkey)

    expr = 'bincen < asimov_llr' if 'true_N' in tkey else 'bincen > asimov_llr'

    plt.fill_betweenx(
        hist_vals, bincen, x2=asimov_llr, where=eval(expr), **kwargs)

    pvalue = (1.0 - float(np.sum(llr_cur > asimov_llr))/len(llr_cur)
              if 'true_N' in tkey else
              (1.0 - float(np.sum(llr_cur < asimov_llr))/len(llr_cur)))

    sigma_fit = np.fabs(asimov_llr - fit_gauss[1])/fit_gauss[2]
    #logging.info(
    #    "  For tkey: %s, gaussian computed mean (of alt MH): %.3f and sigma: %.3f"
    #    %(tkey,fit_gauss[1],fit_gauss[2]))
    pval_gauss = 1.0 - norm.cdf(sigma_fit)
    sigma_1side = np.sqrt(2.0)*erfinv(1.0 - pval_gauss)

    mctrue_row = [tkey,asimov_llr,llr_cur.mean(),pvalue,pval_gauss,sigma_fit,
                  sigma_1side]

    return mctrue_row
开发者ID:tarlen5,项目名称:pisa,代码行数:27,代码来源:plotUtils.py

示例5: plot_posteriors

def plot_posteriors(model_params,plotfile,nbins=30,names=None):

    import matplotlib
    import matplotlib.pyplot as plt

    #----get array dimensions (number of parameters)----
    npar = model_params.shape[1]

    #----loop through parameters----
    for p in xrange(npar):
        
        #--skip iteration column or if parameter is fixed--
        if (max(model_params[:,p]) != min(model_params[:,p])) and p != 0:
            
            y = model_params[:,p]        
            y_hist, x_bin = np.histogram(y,bins=nbins)
            fig,ax=plt.subplots()
            plt.bar(x_bin[:-1],y_hist,width=x_bin[1]-x_bin[0])
            if names != None:
                plt.xlabel(names[p])
            ymin,ymax = ax.get_ylim()

            #-plot median and 1sigma range-
            med = np.median(y)
            sig = np.std(y)
            plt.plot([med,med],[ymin,ymax],color='red',linestyle='-')
            plt.fill_betweenx([0.0,ymax],[med-sig,med-sig],[med+sig,med+sig],color='red',alpha=0.2)

            #-save plot-
            plotfile.savefig()
            plt.close()
开发者ID:kariannfrank,项目名称:sn1987a,代码行数:31,代码来源:fitting.py

示例6: make_group_cumdist_fig

def make_group_cumdist_fig(LD,group_by,pcol):
    '''Make a plot showing the cumulative distribution of the within-group avg of a 
    specified response variable. compared to the cum dist expected by chance.
    INPUTS: 
        LD: pandas dataframe
        group_by: column to groupby for computing avgs.
        pcol: name of response variable column.
    OUTPUTS:
        fig: figure handle'''    

    name_legend_map = {'counts': 'Number of loans (thousands)',
				 'ROI': 'Average ROI (%)',
				  'int_rate': 'interest rate (%)',
				  'default_prob': 'default probability',
				  'dti': 'Debt-to-income ratio',
				  'emp_length': 'employment length (months)',
                        'annual_inc': 'annual income ($)'}

    min_group_loans = 100 #only use states with at least this many loans
    good_groups = LD.groupby(group_by).filter(lambda x: x[pcol].count() >= min_group_loans)
    n_groups = len(good_groups[group_by].unique())
    group_stats = good_groups.groupby(group_by)[pcol].agg(['mean','sem'])
    group_stats.sort_values(by='mean',inplace=True)
    ov_avg = good_groups[pcol].mean()
    
    #compute bootstrap estimates of null distribution of group-avgs
    boot_samps = 500 #number of bootstrap samples to use when estimating null dist
    shuff_avgs = np.zeros((boot_samps,n_groups))
    shuff_data = good_groups.copy()
    for cnt in xrange(boot_samps):
        shuff_data[pcol] = np.random.permutation(shuff_data[pcol].values)
        shuff_avgs[cnt,:] = shuff_data.groupby(group_by)[pcol].mean().sort_values()
    
    yax = np.arange(n_groups)
    rmean = np.mean(shuff_avgs,axis=0)
    rsem = np.std(shuff_avgs,axis=0)

    #plot avg and SEM of within-state returns
    fig, ax1 = plt.subplots(1,1,figsize=(6.0,5.0))
    if group_by == 'zip3':
        ax1.errorbar(group_stats['mean'].values,yax)
    else:
        ax1.errorbar(group_stats['mean'],yax,xerr=group_stats['sem'])
        plt.fill_betweenx(yax, rmean-rsem, rmean+rsem,facecolor='r',alpha=0.5,linewidth=0)
        plt.yticks(yax, group_stats.index,fontsize=6)
    
    ax1.plot(rmean,yax,'r')
    plt.legend(['Measured-avgs','Shuffled-avgs'],loc='best')
    if group_by == 'zip3':    
        plt.ylabel('Zip codes',fontsize=16)
    else:    
        plt.ylabel('States',fontsize=16)
    plt.xlabel(name_legend_map[pcol],fontsize=16)   
    plt.xlim(np.min(group_stats['mean']),np.max(group_stats['mean']))
    plt.ylim(0,n_groups)
    ax1.axvline(ov_avg,color='k',ls='dashed')
    plt.tight_layout()

    return fig
开发者ID:jmmcfarl,项目名称:loan-picker,代码行数:59,代码来源:make_mapping_figs.py

示例7: plot_mutation_rate_violins

def plot_mutation_rate_violins(libraries, out_prefix, nucleotides_to_count='ATCG', exclude_constitutive=False):
    #Makes violin plots of raw mutation rates
    data = []
    labels = []
    for library in libraries:
        labels.append(library.lib_settings.sample_name)
        data.append([math.log10(val) for val in library.list_mutation_rates(subtract_background=False, subtract_control=False,
                                                        nucleotides_to_count=nucleotides_to_count,
                                                        exclude_constitutive=exclude_constitutive) if val>0])

    colormap = uniform_colormaps.viridis
    fig = plt.figure(figsize=(5,8))
    ax1 = fig.add_subplot(111)

    # Hide the grid behind plot objects
    ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5)
    ax1.set_axisbelow(True)

    #ax1.set_xlabel(ylabel)
    plt.subplots_adjust(left=0.1, right=0.95, top=0.9, bottom=0.25)

    pos = range(1,len(libraries)+1)  # starts at 1 to play nice with boxplot
    dist = max(pos)-min(pos)
    w = min(0.15*max(dist,1.0),0.5)
    for library,p in zip(libraries,pos):
        d = [math.log10(val) for val in library.list_mutation_rates(subtract_background=False, subtract_control=False,
                                                        nucleotides_to_count=nucleotides_to_count,
                                                        exclude_constitutive=exclude_constitutive) if val>0]
        k = stats.gaussian_kde(d) #calculates the kernel density
        m = k.dataset.min() #lower bound of violin
        M = k.dataset.max() #upper bound of violin
        x = numpy.arange(m,M,(M-m)/100.) # support for violin
        v = k.evaluate(x) #violin profile (density curve)
        v = v/v.max()*w #scaling the violin to the available space
        plt.fill_betweenx(x,p,v+p,facecolor=colormap((p-1)/float(len(libraries))),alpha=0.3)
        plt.fill_betweenx(x,p,-v+p,facecolor=colormap((p-1)/float(len(libraries))),alpha=0.3)
    if True:
        bplot = plt.boxplot(data,notch=1)
        plt.setp(bplot['boxes'], color='black')
        plt.setp(bplot['whiskers'], color='black')
        plt.setp(bplot['fliers'], color='red', marker='.')

    per50s = []
    i = 1
    for datum in data:
        #per50s.append(stats.scoreatpercentile(datum, 50))
        t = stats.scoreatpercentile(datum, 50)

        per50s.append(t)
        #ax1.annotate(str(round(t,3)), xy=(i+0.1, t), xycoords='data', arrowprops=None, fontsize='small', color='black')
        i+= 1
    #ax1.set_xticks([0.0, 0.5, 1.0, 1.5])
    #ax1.set_yscale('log')
    ax1.set_ylabel('log10 mutation rate')
    ax1.set_ylim(-5, 0)
    xtickNames = plt.setp(ax1, xticklabels=labels)
    plt.setp(xtickNames, rotation=90, fontsize=6)
    plt.savefig(out_prefix+'_logviolin.pdf', transparent='True', format='pdf')
    plt.clf()
开发者ID:borisz264,项目名称:mod_seq,代码行数:59,代码来源:mod_plotting.py

示例8: seismic_wiggle

def seismic_wiggle(section, dt=0.004, ranges=None, scale=1.,
                   color='k', normalize=False):
    """
    Plot a seismic section (numpy 2D array matrix) as wiggles.

    Parameters:

    * section :  2D array
        matrix of traces (first dimension time, second dimension traces)
    * dt : float
        sample rate in seconds (default 4 ms)
    * ranges : (x1, x2)
        min and max horizontal values (default trace number)
    * scale : float
        scale factor multiplied by the section values before plotting
    * color : tuple of strings
        Color for filling the wiggle, positive  and negative lobes.
    * normalize :
        True to normalizes all trace in the section using global max/min
        data will be in the range (-0.5, 0.5) zero centered

    .. warning::
        Slow for more than 200 traces, in this case decimate your
        data or use ``seismic_image``.

    """
    npts, ntraces = section.shape  # time/traces
    if ntraces < 1:
        raise IndexError("Nothing to plot")
    if npts < 1:
        raise IndexError("Nothing to plot")
    t = numpy.linspace(0, dt*npts, npts)
    amp = 1.  # normalization factor
    gmin = 0.  # global minimum
    toffset = 0.  # offset in time to make 0 centered
    if normalize:
        gmax = section.max()
        gmin = section.min()
        amp = (gmax-gmin)
        toffset = 0.5
    pyplot.ylim(max(t), 0)
    if ranges is None:
        ranges = (0, ntraces)
    x0, x1 = ranges
    # horizontal increment
    dx = float((x1-x0)/ntraces)
    pyplot.xlim(x0, x1)
    for i, trace in enumerate(section.transpose()):
        tr = (((trace-gmin)/amp)-toffset)*scale*dx
        x = x0+i*dx  # x positon for this trace
        pyplot.plot(x+tr, t, 'k')
        pyplot.fill_betweenx(t, x+tr, x, tr > 0, color=color)
开发者ID:ajayws,项目名称:fatiando,代码行数:52,代码来源:mpl.py

示例9: drawhigh

def drawhigh(cid,filesize,view,threshold,high,lowlimit=0,highlimit=0):
    avgview=sum(view[5:-5])/len(view)
    highdur=map(lambda x:(x[0],x[-1]),high)

    # 图像设置
    plt.figure(figsize=(15,7)) # figsize()设置的宽高比例是是15:7,图片的尺寸会根据这个比例进行调节
    #plt.xlim(-3,19)
    ylow=min(view)-500      #y轴下限
    yhigh=max(view)+500     #y轴上限
    plt.ylim(ylow,yhigh)
    plt.grid(which='both')


    #绘制结果数据
    plt.plot(range(1,len(view)+1),view,'bo-',ms=1,lw=0.5,label='origin')      # 原始图像
    if lowlimit and highlimit:
        plt.axhline(y=lowlimit,lw=3,ls='-',color='m',label='lowlimit')        # 低限
        plt.axhline(y=highlimit,lw=3,ls='-',color='m',label='highlimit')      # 高限

    plt.axhline(y=avgview,lw=1,ls='--',color='b',label='mean')                # 均值
    #plt.axhline(y=avgview*adjustv,lw=1,ls='--',color='g',label='mean*1.2')   # 均值*adjustv
    plt.axhline(y=threshold,lw=2,ls='--',color='r',label='threshold=1.2*mean')       # 阈值
    plt.legend(loc='upper right')
    plt.xlabel('time (s)')
    plt.ylabel('views')

    # 标注高潮区间
    for item in highdur:
        #plt.axvline(x=item[0],lw=2)
        #plt.axvline(x=item[1],lw=2)
        plt.annotate('',xy=(item[1],threshold),xytext=(item[0],threshold),arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color='g'))
        plt.fill_betweenx([ylow,yhigh],item[0], item[1], linewidth=1, alpha=0.2, color='r')

    plt.show()

    # 结果保存
    '''
    resultpath='D:\\hot_pic2'
    if not os.path.exists(resultpath):
        os.mkdir(resultpath)
    fname=os.path.join(resultpath,cid+'.'+str(filesize)+'.jpg')
    print fname
    plt.savefig(fname,dpi = 300)
    plt.close()
    '''
    return 0;
开发者ID:tuling56,项目名称:Python,代码行数:46,代码来源:hot_view_calc_sim.py

示例10: show_distr

    def show_distr(x,y, vertical=False, label=None, color='blue', linecolor='k', quantile=False):
        var_2d=np.copy(y)
        if vertical:
            var_2d=np.copy(x)
        mid=np.nanmean(var_2d, axis=0)
        lower=mid - np.nanstd(var_2d, axis=0)
        upper=mid + np.nanstd(var_2d, axis=0)
        if quantile:
            lower=np.nanpercentile(var_2d,25,axis=0)
            upper=np.nanpercentile(var_2d,75,axis=0)

        if vertical:
            plt.fill_betweenx(y,lower,upper, color=color)
            plt.plot(mid,y,color=linecolor, linewidth=2)
        else:
            plt.fill_between(x,lower,upper, color=color)
            plt.plot(x,mid,color=linecolor, linewidth=2)
开发者ID:jibbals,项目名称:OMI_regridding,代码行数:17,代码来源:localtests.py

示例11: plot_airmass

def plot_airmass(objectlist,obsvat,date):
    #ax = plt.subplot(111)
    
    for obj in objectlist:
        altdata = compute_alt_plot(obj[0],obj[1],obsvat,date)
        plt.plot(altdata[:,0],altdata[:,1])


    morn_twilight,even_twilight = functions.calc_twilight(obsvat,date)
    

    plt.fill_betweenx([0,90],[morn_twilight.datetime(),morn_twilight.datetime()],x2=[even_twilight.datetime(),even_twilight.datetime()],color="0.5")

    locs,labels = plt.xticks()
    plt.setp(labels,rotation=45)
    plt.ylim(0,90)
    plt.show()
开发者ID:georgezhou,项目名称:scheduler,代码行数:17,代码来源:phot_functions.py

示例12: peek

 def peek(self):
     plt.imshow(self.data, aspect='auto', interpolation='none',
                extent=[self.times[0].to(u.s).value,
                        self.times[-1].to(u.s).value,
                        self.latitude[0].to(u.degree).value,
                        self.latitude[-1].to(u.degree).value])
     plt.xlim(0, self.times[-1].to(u.s).value)
     if self.times[0].to(u.s).value > 0.0:
         plt.fill_betweenx([self.latitude[0].to(u.degree).value,
                            self.latitude[-1].to(u.degree).value],
                           self.times[0].to(u.s).value,
                           hatch='X', facecolor='w', label='not observed')
     plt.ylabel('degrees of arc from first measurement')
     plt.xlabel('time since originating event (seconds)')
     plt.title('arc: ' + self.title)
     plt.legend(framealpha=0.5)
     plt.show()
     return None
开发者ID:wafels,项目名称:eitwave,代码行数:18,代码来源:aware2.py

示例13: plotBootROC

def plotBootROC(rocDfL, labelL=None, aucL=None, ciParam='fpr'):
    """Plot of ROC curves with confidence intervals.

    Parameters
    ----------
    rocDfL : list of pd.DataFrames
        Each DataFram is one model and must include columns
        fpr_est, tpr_est, fpr_lb, fpr_ub
    labelL : list of str
        Names of each model for legend
    aucL : list of floats
        AUC scores of each model for legend"""
    if labelL is None and aucL is None:
        labelL = ['Model %d' % i for i in range(len(rocDfL))]
    elif labelL is None:
        labelL = ['Model %d (AUC = %0.2f [%0.2f, %0.2f])' % (i, auc[0], auc[1], auc[2]) for i, auc in enumerate(aucL)]
    else:
        labelL = ['%s (AUC = %0.2f [%0.2f, %0.2f])' % (label, auc[0], auc[1], auc[2]) for label, auc in zip(labelL, aucL)]

    colors = sns.color_palette('Set1', n_colors=len(rocDfL))

    plt.cla()
    plt.gca().set_aspect('equal')
    for i, (rocDf, label) in enumerate(zip(rocDfL, labelL)):
        if ciParam == 'fpr':
            plt.fill_betweenx(rocDf['tpr_est'], rocDf['fpr_lb'], rocDf['fpr_ub'], alpha=0.3, color=colors[i])
        elif ciParam == 'tpr':
            plt.fill_between(rocDf['fpr_est'], rocDf['tpr_lb'], rocDf['tpr_ub'], alpha=0.3, color=colors[i])
        plt.plot(rocDf['fpr_est'], rocDf['tpr_est'],'-', color=colors[i], lw=2)
        # plt.plot(rocDf['fpr_est'], rocDf['tpr_lb'], '.--', color=colors[i], lw=1)
        # plt.plot(rocDf['fpr_est'], rocDf['tpr_ub'], '.--', color=colors[i], lw=1)
        # plt.plot(rocDf['fpr_lb'], rocDf['tpr_est'], '--', color=colors[i], lw=1)
        # plt.plot(rocDf['fpr_ub'], rocDf['tpr_est'], '--', color=colors[i], lw=1)
    plt.plot([0, 1], [0, 1], '--', color='gray', label='Chance')
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('ROC')
    plt.legend([plt.Line2D([0, 1], [0, 1], color=c, lw=2) for c in colors], labelL, loc='lower right', fontsize=10)
    plt.show()
开发者ID:agartland,项目名称:utils,代码行数:41,代码来源:optimism_bootstrap.py

示例14: gen_fill

def gen_fill(tail_num, deg_left, deg_right):
    if tail_num == 3:
        plt.fill_betweenx(mlab.normpdf(x,mean,sigma),deg_left,x, where = ( x <= deg_left))
        plt.fill_betweenx(mlab.normpdf(x,mean,sigma), x,deg_right, where = ( x >= deg_right))    
        plt.draw()
        plt.show()
    elif tail_num ==  2: #right
        plt.fill_betweenx(mlab.normpdf(x,mean,sigma), x,deg_right, where = ( x >= deg_right))    
        plt.draw()
        plt.show()
    elif tail_num == 1 :
        plt.fill_betweenx(mlab.normpdf(x,mean,sigma),deg_left,x, where = ( x <= deg_left))
        plt.draw()
        plt.show()
开发者ID:IcarusRisen,项目名称:Dean_Lab_Stats,代码行数:14,代码来源:T_Test_core.py

示例15: plot_wiggle

def plot_wiggle(data,zz=1,skip=1,gain=1,alpha=0.7,black=False):
    '''
    Wiggle plot of generic 2D numpy array.

    INPUT
    data: 2D numpy array
    zz: vertical sample rate in depth or time
    skip: interval to choose traces to draw
    gain: multiplier applied to each trace
    '''
    [n_samples,n_traces]=data.shape
    t=range(n_samples)
    plt.figure(figsize=(9.6,6))
    for i in range(0, n_traces,skip):
        trace=gain*data[:,i] / np.max(np.abs(data))
        plt.plot(i+trace,t,color='k', linewidth=0.5)
        if black==False:
            plt.fill_betweenx(t,trace+i,i, where=trace+i>i, facecolor=[0.6,0.6,1.0], linewidth=0)
            plt.fill_betweenx(t,trace+i,i, where=trace+i<i, facecolor=[1.0,0.7,0.7], linewidth=0)
        else:
            plt.fill_betweenx(t,trace+i,i, where=trace+i>i, facecolor='black', linewidth=0, alpha=alpha)
    locs,labels=plt.yticks()
    plt.yticks(locs,[n*zz for n in locs.tolist()])
    plt.grid()
    plt.gca().invert_yaxis()
开发者ID:BKJackson,项目名称:geophysical_notes,代码行数:25,代码来源:aaplot.py


注:本文中的matplotlib.pyplot.fill_betweenx函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。