本文整理汇总了Python中matplotlib.pyplot.figlegend函数的典型用法代码示例。如果您正苦于以下问题:Python figlegend函数的具体用法?Python figlegend怎么用?Python figlegend使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了figlegend函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: scatter_plot_matrix
def scatter_plot_matrix(data,class_labels,filename):
plt.figure(figsize=(2000/96, 2000/96), dpi=96)
for i in range(0,5):
plt.subplot(5,5,5*i+i+1)
plt.title(str(data.columns[i]), fontsize=10)
min_value = float(np.min(data.ix[:,i]))
max_value = float(np.max(data.ix[:,i]))
xs = np.linspace(min_value,max_value,500)
k=0
for cl in class_list:
ind = np.where(class_labels == cl)[0]
plot_density(data.ix[ind,i],xs,col[k])
k+=1
k=0
for j in range(0,5):
if i!=j:
plt.subplot(5,5,5*i+j+1)
plt.title(str(data.columns[i]) + " vs " + str(data.columns[j]), fontsize=10)
plt.xlabel(data.columns[i], fontsize=10)
plt.ylabel(data.columns[j], fontsize=10)
for k in range(0,4):
ind = np.where(class_labels == class_list[k])[0]
plt.scatter(data.ix[ind,i],data.ix[ind,j],s=10,color = col[k],marker = marker_style[k], facecolors = 'none')
line=[]
for i in range(0,4):
line.append(mlines.Line2D([], [], color=col[i], marker=marker_style[i],markersize=10))
plt.tight_layout()
plt.figlegend(handles = line, labels = class_list, loc = "upper right")
plt.savefig(filename)
plt.show() #refer to the saved image for proper visualization
示例2: plot
def plot(labels, real_values, *values_list):
values = list(values_list)
one_step_ahead = []
one_step_ahead.append(real_values)
k_step_ahead = []
k_step_ahead.append(real_values)
for i in range(0, len(values)/2):
one_step_ahead.append(values[i])
k_step_ahead.append(values[len(values)/2 + i])
observations = []
for i in np.arange(1, len(real_values) + 1):
observations.append(i)
plt.subplot(211)
plt.grid(True)
plt.xlabel('observations')
plt.ylabel('temperature (C)')
plt.title('One-step-ahead Data Prediction')
plt.ylim(0, 31)
lines = []
for lab, val in zip(labels, one_step_ahead):
lines.extend(plt.plot(observations, val, label=lab))
plt.subplot(212)
plt.grid(True)
plt.xlabel('observations')
plt.ylabel('temperature (C)')
plt.title('K-step-ahead Data Prediction')
plt.ylim(0, 31)
for lab, val in zip(labels, k_step_ahead):
plt.plot(observations, val, label=lab)
plt.figlegend(lines, labels, loc = 'lower center', ncol=len(labels), labelspacing=0.)
plt.show()
示例3: overlay_raw_data
def overlay_raw_data(raw_dict, individual_raw_dict, mole_graph, individual_graph, sun_results, uuid, out_path):
# used because the SUN model uses single letter labels
para_map = {"Notch2NL-A": "A", "Notch2NL-B": "B", "Notch2NL-C": "C", "Notch2NL-D": "D", "Notch2": "N"}
fig, plots = plt.subplots(len(mole_graph.paralogs), sharey=True, figsize=(12.0, 5.0))
individual_patch = matplotlib.patches.Patch(color=color_palette[0], fill="true")
mole_patch = matplotlib.patches.Patch(color=color_palette[1], fill="true")
plt.figlegend((individual_patch, mole_patch), ("Individual", "Mole"), loc='upper right', ncol=2)
max_gap = max(stop - start for start, stop in mole_graph.paralogs.itervalues())
for i, (p, para) in enumerate(izip(plots, mole_graph.paralogs.iterkeys())):
start, stop = mole_graph.paralogs[para]
rounded_max_gap = int(math.ceil(1.0 * max_gap / 10000) * 10000)
p.axis([start, start + rounded_max_gap, 0, 4])
x_ticks = [start] + range(start + 20000, start + rounded_max_gap + 20000, 20000)
p.axes.set_yticks(range(5))
p.axes.set_yticklabels(map(str, range(5)), fontsize=9)
p.axes.set_xticks(x_ticks)
p.axes.set_xticklabels(["{:.3e}".format(start)] + [str(20000 * x) for x in xrange(1, len(x_ticks))])
starts, stops, vals = zip(*raw_dict[para])
p.hlines(vals, starts, stops, color=color_palette[1], alpha=0.8, linewidth=2.0)
if len(sun_results[para_map[para]]) > 0:
sun_pos, sun_vals = zip(*sun_results[para_map[para]])
p.vlines(np.asarray(sun_pos), np.zeros(len(sun_pos)), sun_vals, color="#E83535", linewidth=0.5, alpha=0.5)
for x in range(1, 4):
p.axhline(y=x, ls="--", lw=0.5)
p.set_title("{}".format(para))
for i, (p, para) in enumerate(izip(plots, individual_graph.paralogs.iterkeys())):
starts, stops, vals = zip(*individual_raw_dict[para])
p.hlines(vals, starts, stops, color=color_palette[0], alpha=0.8, linewidth=2.0)
p.set_title("{}".format(para))
fig.subplots_adjust(hspace=0.8)
plt.savefig(out_path, format="png", dpi=500)
plt.close()
示例4: compare_hr_run
def compare_hr_run(filename1, filename2, descriptor1='1st HR',
descriptor2='2nd HR', verbose=False):
"""
Method to generate a plot comparison between two gpx runs
"""
import matplotlib.pyplot as plt
run1 = GPXCardio(filename1, verbose)
run2 = GPXCardio(filename2, verbose)
cardio1 = run1.getCardio()
cardio2 = run2.getCardio()
# Assume 1st file goes first in time
def pts_fun(it, hr):
t = map(lambda x: (x[0] - it).seconds, hr)
hr = map(lambda x: x[1], hr)
return t, hr
initial_time = cardio1[0][0]
f1_time, f1_hr = pts_fun(initial_time, cardio1)
f2_time, f2_hr = pts_fun(initial_time, cardio2)
lines = plt.plot(f1_time, f1_hr, 'r', f2_time, f2_hr, 'b')
plt.ylabel("Heart Rate [bpm]")
plt.xlabel("Seconds from begining")
plt.title("Heart Rate Monitor Comparison")
plt.grid(True)
plt.figlegend((lines), (descriptor1, descriptor2), 'lower right')
plt.show()
示例5: percplot
def percplot(data, perclist, file_name='weight_update_percentile', file_extension='.png', save_im=True, disp_im=False,
sety=True):
"""Plot percentiles of weight update information during 'training1' of RBM object (RBM_m.py)
:param data: list of lists, each sublist containing the same percentiles of the weight update matrices
:param perclist: list of used percentiles
:param file_name: name of optional output file (default: 'weight_update_percentile')
:param file_extension: extension of optional output file (default: '.png')
:param save_im: whether to save image (default: True)
:param disp_im: whether to show image (default: False)
:param sety: whether to set the y-range to predefined limits (default: True)
:return: nothing, displays plot or saves plot to output file
"""
fig = plt.figure()
lines = plt.plot(data)
plt.ylabel('update / weight')
plt.xlabel('batch number')
if sety:
plt.ylim([-0.1, 0.1])
plt.figlegend(lines, perclist, 'upper right')
if disp_im:
plt.show()
if save_im:
# Save to (.png) file, remove white border
plt.savefig("{}{}".format(file_name, file_extension), bbox_inches='tight')
plt.close(fig) # Clear current figure
示例6: med_spread_plot
def med_spread_plot(data, obj_names, fig_name="temp.png", **settings):
fig = plt.figure(1)
fig.subplots_adjust(hspace=0.5)
directory = fig_name.rsplit("/", 1)[0]
mkdir(directory)
for i, data_map in enumerate(data):
meds = data_map["meds"]
iqrs = data_map.get("iqrs", None)
if iqrs:
x = range(len(meds))
index = int(str(len(data))+"1"+str(i+1))
plt.subplot(index)
plt.title(obj_names[i])
plt.plot(x, meds, 'b-', x, iqrs, 'r-')
plt.ylim((min(iqrs)-1, max(meds)+1))
else:
x = range(len(meds))
index = int(str(len(data))+"1"+str(i+1))
plt.subplot(index)
plt.title(obj_names[i])
plt.plot(x, meds, 'b-')
plt.ylim((min(meds)-1, max(meds)+1))
blue_line = mlines.Line2D([],[], color='blue', label='Median')
red_line = mlines.Line2D([],[], color='red', label='IQR')
plt.figlegend((blue_line, red_line), ('Median', 'IQR'), loc=9, bbox_to_anchor=(0.5, 0.075), ncol=2)
plt.savefig(fig_name)
plt.clf()
示例7: rcp
def rcp(results, graphNames):
rsltSize = results[0].size / 3
prec = range(0,rsltSize)
precN = range(0,rsltSize)
recall = range(0, rsltSize)
for r in results:
for x in range(0,rsltSize):
numPos = float(r[0,x][0])
if numPos == 0:
prec[x] = 1
else:
prec[x] = r[0,x][2] / numPos
for x in range(0,rsltSize):
recall[x] = r[0,x][2] / float(r[0,x][1])
for x in range(0,rsltSize):
precN[x] = 1- prec[x]
graph = plt.plot(precN,recall)
graphs.append(graph)
# plot settings
plt.ylabel('Recall')
plt.xlabel('1 - Precision')
plt.axis([0, 1.0, 0, 1.0])
plt.grid(True)
# legend for our graphs
plt.figlegend( (graphs), graphNames,'upper left')
示例8: __init__
def __init__(self, window, subplot_num, x_axis, dim=2):
ax = window.add_subplot(subplot_num)
l = len(x_axis)
self.y = ax.plot(range(l), l*[-1,], '-', # Obtain handle to y axis.
range(l), l*[-1,], '--',
marker='^'
)
# Hack: because initially the graph has too few y points, compared to x points,
# nothing should be shown on the graph.
# The hack is that initial y axis is seto be be below in hell.
self.y_data = []
for i in range(dim):
self.y_data.append( col.deque(len(x_axis)*[-9999,], # Circular buffer.
maxlen=len(x_axis)
)
)
# Make plot prettier
plt.grid(True)
plt.tight_layout()
ax.set_ylim(MIN_TEMP, MAX_TEMP)
plt.figlegend(self.y, ('tempr', 'ctrl'), 'upper right');
ax.set_ylabel('temperature [C]')
# Terrible hack!
if subplot_num == 121:
ax.set_xlabel('time [s]')
else:
ax.set_xlabel('time [min]')
示例9: plotDif
def plotDif(leap, est, tMag, setName):
styleL = ["solid", "dashed", "dotted", "dashdot"]
if len(est[0]) == 3:
leap = leap[:, :-1]
plt.figure()
statesP = plt.subplot(211)
# for i in range(0,len(est[0]),1):
for i in range(0, 1, 4):
statesP.plot(tMag, leap[:, i], c="r", ls=styleL[i])
statesP.plot(tMag, est[:, i], c="g", ls=styleL[i])
# statesP.legend()
statesP.set_ylabel("Angle [rad]")
statesP.set_title("Difference " + setName)
difP = plt.subplot(212)
dif = leap - est[:, :4]
normedDif = np.linalg.norm(dif, axis=1)
difP.plot(tMag, normedDif, c="g", ls="-")
difP.set_ylabel("Normed Difference [rad]")
difP.set_xlabel("Time [sec]")
linePerf = mlines.Line2D([], [], color="r", markersize=15, label="Leap")
lineEst = mlines.Line2D([], [], color="g", markersize=15, label="Estimated")
plt.figlegend((linePerf, lineEst), ("Leap", "Estimated"), loc="upper right")
示例10: PlotGraphs
def PlotGraphs(posDistList, negDiNucDist, graphFileName):
global threeUtrValues, threeUtrErrors;
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
matplotlib.rcParams.update({'font.size': 8})
posMeanValues = [x[0] for x in posDistList.values()]
posErrorValues = [x[1] for x in posDistList.values()]
negMeanValues = [x[0] for x in negDiNucDist.values()]
negErrorValues = [x[1] for x in negDiNucDist.values()]
#Two subplots, the axes array is 1-d
fig, (ax1, ax2) = plt.subplots(nrows=2)
fig.suptitle("Di-nucleotide distribution: 3'UTR vs Generated Files", fontsize=8)
labels = posDistList.keys();
eb1, eb2 = distribution_plot(ax1, "Positive Set", posMeanValues, posErrorValues, labels);
eb1, eb2 = distribution_plot(ax2, "Negative Set", negMeanValues, negErrorValues, labels);
plt.figlegend((eb1, eb2), ("Generated", "3'UTR"), loc = 'lower right');
plt.savefig(graphFileName);
plt.close(fig)
示例11: VisualizeReferenceSpectrum
def VisualizeReferenceSpectrum(rf_files, freq_sampling):
plt.figure(1, figsize=(5, 4))
handles = []
labels = []
for rf_file in rf_files:
ComponentType = itk.ctype('float')
Dimension = 2
ImageType = itk.VectorImage[ComponentType, Dimension]
reader = itk.ImageFileReader[ImageType].New(FileName=rf_file)
reader.Update()
image = reader.GetOutput()
arr = itk.GetArrayFromImage(image)
arr /= arr[:,:,arr.shape[2]/3-arr.shape[2]/5:arr.shape[2]/2+arr.shape[2]/5].max()
freq = np.linspace(freq_sampling / 2 / arr.shape[2], freq_sampling / 2, arr.shape[2])
ax = plt.plot(freq, arr[0, 0, :].ravel(), label=rf_file)
handles.append(ax[0])
labels.append(rf_file)
plt.xlabel('Frequency [Hz]')
plt.ylabel('Power spectrum [V]')
plt.figlegend(handles, labels, 'upper right')
plt.ylim(0.0, 1.0)
dirname = os.path.dirname(rf_files[0])
plt.savefig(os.path.join(dirname, 'ReferenceSpectrum.png'), dpi=300)
plt.show()
示例12: model_effects_plot
def model_effects_plot():
grs = linspace(0.01,1,15)
simple = grs
neg = linspace(-0.4,0.01,6)
simple = simple/simple.mean()
degraded = grs+0.4
degmean = degraded.mean()
degraded = degraded/degmean
neg_deg = neg+0.4
neg_deg = neg_deg/degmean
rate = 1/(1+0.2/grs)
rate_effect = grs/rate
rate_effect = rate_effect/rate_effect.mean()
figure(figsize=(5,3))
ax = subplot(111)
ax.plot(grs,simple,'o',label="Unregulated protein - basic model")
ax.plot(grs,degraded,'o',label="Unregulated protein - with degradation")
ax.plot(neg,neg_deg,'--g')
ax.plot(grs,rate_effect,'o',label="Unregulated protein - under decreasing biosynthesis rate")
ax.plot(grs,rate,'--r',label="Biosynthesis rate")
ax.annotate("degradation\nrate", xy=(-0.4,0),xytext=(-0.4,.6),arrowprops=dict(facecolor='black',shrink=0.05,width=1,headwidth=4),horizontalalignment='center',verticalalignment='center',fontsize=8)
ax.set_xlim(xmin=-0.5)
ax.set_ylim(ymin=0.)
ax.set_xlabel('Growth rate [$h^{-1}$]',fontsize=8)
set_ticks(ax,6)
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.set_ylabel('Normalized protein concentration',fontsize=8)
tight_layout()
subplots_adjust(top=0.83)
handles,labels=ax.get_legend_handles_labels()
figlegend(handles,labels,fontsize=6,mode='expand',loc='upper left',bbox_to_anchor=(0.0,0.8,1,0.2),ncol=2,numpoints=1)
savefig('TheoreticalModelEffects.pdf')
close()
示例13: plot_all_dbs_hist
def plot_all_dbs_hist():
figure(figsize=(6.5,5))
dbs = ['Heinemann-chemo','Peebo-gluc','Valgepea','HuiAlim','HuiClim','HuiRlim']
dbext = {'Heinemann-chemo':'','Peebo-gluc':'','Valgepea':'','HuiAlim':', A-lim','HuiClim':', C-lim','HuiRlim':', R-lim'}
p=subplot(111)
for i,db in enumerate(dbs):
ps = subplot(231+i)
conds,gr,conc_data = datas[""][db]
plot_corr_hist(ps,db,conc_data,categories)
if db == 'Valgepea':
year = 2013
else:
year = 2015
ps.annotate("data from %s et. al. %d%s" % (db_name[db],year,dbext[db]),xy=(0.5,0.5),xytext=(-0.87,303),fontsize=6,zorder=10)
ps.set_ylim(0,350)
ps.set_xlim(-1,1)
ps.annotate(chr(65+i),xy=(0.5,0.5),xytext=(-0.87,320),fontsize=10,zorder=10)
#assume both subplots have the same categories.
handles,labels=ps.get_legend_handles_labels()
tight_layout()
figlegend(handles,labels,fontsize=6,mode='expand',loc='upper left',bbox_to_anchor=(0.15,0.8,0.7,0.2),ncol=2)
subplots_adjust(top=0.9)
#fig = gcf()
#py.plot_mpl(fig,filename="Growth rate Correlation histograms")
savefig('AllDbsGrowthRateCorrelation.pdf')
close()
示例14: regional_sa
def regional_sa(model, expr, policy={}, nsamples=1000):
samples = sample_lhs(model, nsamples)
output = evaluate(model, overwrite(samples, policy))
classification = output.apply(expr)
classes = sorted(set(classification))
fig, axarr = plt.subplots(1, len(model.uncertainties))
lines = []
for i, u in enumerate(model.uncertainties):
for k in classes:
indices = [classification[j] == k for j in range(len(classification))]
values = [output[j][u.name] for j in range(len(indices)) if indices[j]]
sorted_values = sorted(enumerate(values), key=operator.itemgetter(1))
h = axarr[i].plot([v[1] for v in sorted_values], np.arange(len(values))/float(len(values)-1))
lines.append(h[0])
values = [output[j][u.name] for j in range(len(indices))]
sorted_values = sorted(enumerate(values), key=operator.itemgetter(1))
h = axarr[i].plot([v[1] for v in sorted_values], np.arange(len(values))/float(len(values)-1))
lines.append(h[0])
axarr[i].set_title(u.name)
plt.figlegend(lines[:len(classes)] + [lines[-1]],
map(str, classes) + ["Unconditioned"],
loc='lower center',
ncol=3,
labelspacing=0. )
return fig
示例15: rank_plot
def rank_plot(self, rank_thresh = 100, show = True, filename = None):
"""Returns plot of the frequencies of the attributes, sorted by rank."""
plt.figure()
afdf = self.attr_freq_df(rank_thresh)
cmap = plt.cm.gist_ncar
colors = {i : cmap(int((i + 1) * cmap.N / (self.num_attr_types + 1.0))) for i in range(self.num_attr_types)}
fig, (ax1, ax2) = plt.subplots(2, 1, sharex = False, sharey = False, facecolor = 'white')
plots_for_legend = []
for (i, t) in enumerate(self.attr_types):
afdf_for_type = afdf[afdf['type'] == t]
plots_for_legend.append(ax1.plot(afdf_for_type['rank'], np.log10(afdf_for_type['freq']), color = colors[i], linewidth = 2)[0])
ax2.plot(afdf_for_type['rank'], afdf_for_type['cumulative %'], color = colors[i], linewidth = 2)
ax1.set_title('Attribute frequencies by type', fontweight = 'bold')
ax2.set_xlabel('rank')
ax1.set_ylabel('log10(freq)')
ax2.set_ylabel('cumulative %')
ax2.set_ylim((0, 100))
ax1.grid(True, 'major', color = 'w', linestyle = '-')
ax2.grid(True, 'major', color = 'w', linestyle = '-')
ax1.set_axisbelow(True)
ax2.set_axisbelow(True)
ax1.patch.set_facecolor('0.89')
ax2.patch.set_facecolor('0.89')
plt.figlegend(plots_for_legend, self.attr_types, 'right', fontsize = 10)
if filename:
plt.savefig(filename)
if show:
plt.show(block = False)