本文整理汇总了Python中matplotlib.pyplot.contourf函数的典型用法代码示例。如果您正苦于以下问题:Python contourf函数的具体用法?Python contourf怎么用?Python contourf使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了contourf函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_kde
def plot_kde(opts, kde_data, centre = None):
plt.figure()
plt.contourf(kde_data[0], kde_data[1],
kde_data[2], 30)
if centre:
plt.plot(np.ones(2) * centre[0], (plt.ylim()), 'w:',
label = 'KDE Centre')
plt.plot((plt.xlim()), np.ones(2) * centre[1], 'w:')
if opts.H0 == 100.0:
plt.xlabel(r'X [Mpc h$^{-1}$]')
plt.ylabel(r'Y [Mpc h$^{-1}$]')
else:
plt.xlabel('X [Mpc]')
plt.ylabel('Y [Mpc]')
plt.legend()
plt.colorbar()
output_file = opts.input_file + '.kde.pdf'
plt.savefig(output_file)
print ' KDE plot saved to:', output_file
plt.close()
示例2: contourf
def contourf(self,vv=range(-10,0),**kwargs):
fig= plt.figure(figsize=(9,8))
#h.imshow(np.flipud(self.Z),extent=[bbox[0],bbox[1],bbox[3],bbox[2]])
plt.contourf(self.grd.X,self.grd.Y,self.Z,vv,**kwargs)
plt.colorbar()
plt.axis('equal')
return fig
示例3: draw
def draw(data, classes, model, resolution=100):
mycm = mpl.cm.get_cmap('Paired')
one_min, one_max = data[:, 0].min()-0.1, data[:, 0].max()+0.1
two_min, two_max = data[:, 1].min()-0.1, data[:, 1].max()+0.1
xx1, xx2 = np.meshgrid(np.arange(one_min, one_max, (one_max-one_min)/resolution),
np.arange(two_min, two_max, (two_max-two_min)/resolution))
inputs = np.c_[xx1.ravel(), xx2.ravel()]
z = []
for i in range(len(inputs)):
z.append(predict(model, inputs[i])[0])
result = np.array(z).reshape(xx1.shape)
plt.contourf(xx1, xx2, result, cmap=mycm)
plt.scatter(data[:, 0], data[:, 1], s=50, c=classes, cmap=mycm)
t = np.zeros(15)
for i in range(15):
if i < 5:
t[i] = 0
elif i < 10:
t[i] = 1
else:
t[i] = 2
plt.scatter(model[:, 0], model[:, 1], s=150, c=t, cmap=mycm)
plt.xlim([0, 10])
plt.ylim([0, 10])
plt.show()
示例4: plot_qdens_log
def plot_qdens_log(r,z,dens, dens0):
CS0 = plt.contourf(z,r,dens0, colors='k') #mark areas with data but zero density
if dens.max() > 0.0:
CS1 = plt.contourf(z, r, dens,norm=LogNorm(vmin=1e10, vmax=1e20))
if drawCB:
CB1 = plt.colorbar(CS1)
else:
CS1 = None
if drawCB:
CB1 = plt.colorbar(CS0, ticks=[])
if dens.min() < 0.0:
CS2 = plt.contourf(z, r, -dens,norm=LogNorm(vmin=1e10, vmax=1e20), hatches='x')
if drawCB:
CB2 = plt.colorbar(CS2)
else:
CS2 = None
if drawCB:
CB2 = plt.colorbar(CS0, ticks=[])
if drawCB:
CB1.set_label("Positive charge density [cm$^{-3}$]")
CB2.set_label("Negative charge density [cm$^{-3}$]")
plt.xlabel("z [um]")
plt.ylabel("r [um]")
if axisShape == "image":
plt.axis('image')
if cutR != None:
plt.ylim(0,cutR)
return (CS0, CS1, CS2)
示例5: test_complete
def test_complete():
fig = plt.figure('Figure with a label?', figsize=(10, 6))
plt.suptitle('Can you fit any more in a figure?')
# make some arbitrary data
x, y = np.arange(8), np.arange(10)
data = u = v = np.linspace(0, 10, 80).reshape(10, 8)
v = np.sin(v * -0.6)
plt.subplot(3, 3, 1)
plt.plot(list(xrange(10)))
plt.subplot(3, 3, 2)
plt.contourf(data, hatches=['//', 'ooo'])
plt.colorbar()
plt.subplot(3, 3, 3)
plt.pcolormesh(data)
plt.subplot(3, 3, 4)
plt.imshow(data)
plt.subplot(3, 3, 5)
plt.pcolor(data)
plt.subplot(3, 3, 6)
plt.streamplot(x, y, u, v)
plt.subplot(3, 3, 7)
plt.quiver(x, y, u, v)
plt.subplot(3, 3, 8)
plt.scatter(x, x**2, label='$x^2$')
plt.legend(loc='upper left')
plt.subplot(3, 3, 9)
plt.errorbar(x, x * -0.5, xerr=0.2, yerr=0.4)
###### plotting is done, now test its pickle-ability #########
# Uncomment to debug any unpicklable objects. This is slow (~200 seconds).
# recursive_pickle(fig)
result_fh = BytesIO()
pickle.dump(fig, result_fh, pickle.HIGHEST_PROTOCOL)
plt.close('all')
# make doubly sure that there are no figures left
assert_equal(plt._pylab_helpers.Gcf.figs, {})
# wind back the fh and load in the figure
result_fh.seek(0)
fig = pickle.load(result_fh)
# make sure there is now a figure manager
assert_not_equal(plt._pylab_helpers.Gcf.figs, {})
assert_equal(fig.get_label(), 'Figure with a label?')
示例6: plot_decision_regions
def plot_decision_regions(X, y, classifier, resolution=0.02):
# マーカーとカラーマップの準備
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
# 決定領域のプロット
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
# グリッドポイントの生成
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
# 各特徴量を1次元配列に変換して予測を実行
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
# 予測結果を元のグリッドポイントのデータサイズに変換
Z = Z.reshape(xx1.shape)
# グリッドポイントの等高線プロット
plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
# 軸の範囲設定
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
# クラスごとにサンプルをプロット
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx),
marker=markers[idx], label=cl)
示例7: plot_3d
def plot_3d(M, epoints, eloss, limits = [], xlim = [], ylim = [],
title = '', save_fig = False, outname = '3dmap.png'):
"""
Plots 3d incident energy x energy loss graph. M is a matrix with the data
as M[incident energy, energy loss]. epoints is the incident energies, and
eloss the energy loss.
"""
plt.figure()
if len(limits[:]) == 0:
fig = plt.contourf(epoints, eloss, M, 100)
plt.colorbar()
else:
tks = []
for i in range (6):
tks.append(limits[0] + i*(limits[1]-limits[0])/5)
z = np.linspace(limits[0],limits[1], 100, endpoint=True)
fig = plt.contourf(epoints, eloss, M, z)
plt.colorbar(ticks=tks)
plt.xlabel('Incident Energy (eV)', fontsize=15)
plt.ylabel('Energy Loss (eV)', fontsize=15)
if len(xlim) != 0:
plt.xlim(xlim[0],xlim[1])
if len(ylim) != 0:
plt.ylim(ylim[0], ylim[1])
plt.title(title)
if save_fig is True:
plt.savefig(outname, format='png', dpi=1000)
示例8: display
def display(self, X, y, w):
# create a mesh to plot in
h = .02
x_min, x_max = X[:, 1].min() - 1, X[:, 1].max() + 1
y_min, y_max = X[:, 2].min() - 1, X[:, 2].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = np.inner(w, np.c_[np.ones(xx.ravel().shape),
xx.ravel(),
yy.ravel()])
Z[Z >= 0] = 1
Z[Z < 0] = -1
Z = Z.reshape(xx.shape)
# print 'Z', Z
plt.figure()
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)
# Plot also the training points
plt.scatter(X[:, 1], X[:, 2], c=y, cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()
示例9: plot_landscape_2d
def plot_landscape_2d(landscape, ds):
"""
Plot the height of the landscape in 2 dimensions given a landscape object
:param landscape: Landscape object with all data
:param ds: Downsampling factor for only plotting every ds point
:return: Plot the landscape in the x-y-coordinate system
"""
# Construct the (x, y)-coordinate system
x_grid = np.linspace(landscape.x_min, landscape.x_max, landscape.num_of_nodes_x)
y_grid = np.linspace(landscape.y_max, landscape.y_min, landscape.num_of_nodes_y)
x, y = np.meshgrid(x_grid[0::ds], y_grid[0::ds])
z = landscape.arr[0::ds, 0::ds]
# Decide color map and number of contour levels
cmap = plt.get_cmap('terrain')
v = np.linspace(min(landscape.coordinates[:, 2]), max(landscape.coordinates[:, 2]), 100, endpoint=True)
plt.contourf(x, y, z, v, cmap=cmap)
plt.colorbar(label='Height', spacing='uniform')
# Title and labels
plt.rcParams.update({'font.size': 14})
plt.title('The landscape')
plt.xlabel('x')
plt.ylabel('y')
plt.show()
示例10: plot_ICON_clt
def plot_ICON_clt(ICON_data_dict):
"This function gets ICON data and plots corresponding satellite pictures."
# Import and create basemap for plotting countries and coastlines
from mpl_toolkits.basemap import Basemap
# Create well formatted time_string
time_string = datetime.fromtimestamp(int(unix_time_in)).strftime('%Y-%m-%d-%H-%M')
# Plotting temperature data
plt.figure()
# Plot contourf plot with lat/lon regridded ICON data
cmap_cloud = plt.cm.gray
levels_cloud = np.arange(0,101,10)
plt.contourf(ICON_data_dict["ICON_X_mesh"], ICON_data_dict["ICON_Y_mesh"], ICON_data_dict["ICON_clt"], levels=levels_cloud, cmap=cmap_cloud)
plt.colorbar()
# Plot map data
map = Basemap(llcrnrlon=4.0,llcrnrlat=47.0,urcrnrlon=15.0,urcrnrlat=55.0,
resolution='i')
map.drawcoastlines()
map.drawcountries()
lat_ticks = [55.0,53.0,51.0,49.0,47.0]
map.drawparallels(lat_ticks, labels=[1,0,0,0], linewidth=0.0)
lon_ticks = [4.0,6.0,8.0,10.0,12.0,14.0]
map.drawmeridians(lon_ticks, labels=[0,0,0,1], linewidth=0.0)
# Save plot and show it
plt.savefig(output_path + 'TotalCloudCover_' + time_string + '.png')
示例11: plot2DInRealCrd
def plot2DInRealCrd( u, transverseProfile, stat ):
R = stat["outerRadius"]
v = np.linspace(0.0, 5E5, 1001)
U, V = np.meshgrid(u,v)
A = damping(U, V, stat["wavenumber"], stat["width"], stat["solver"]["eigenvalue"], R)
energy = np.zeros(U.shape)
for i in range(0, U.shape[1]):
if (( U[0,i] > 0.0 ) or ( U[0,i] < -stat["width"])):
energy[:,i] = transverseProfile[i]*A[:,i]
else:
energy[:,i] = transverseProfile[i]
plt.contourf(U,V/1000.0, energy, 100, cmap="gist_heat", norm=mpl.colors.LogNorm())
plt.xlabel("$u$ (nm)")
plt.ylabel("$v \; (\mathrm{\mu m})$")
fname = "Figures/profile2D_uvplane.jpeg"
plt.savefig(fname, bbox_inches="tight", dpi=800)
print ("Figure written to %s"%(fname))
plt.clf()
XYcompl = R*np.exp((U+1j*V)/R)
transverse = XYcompl.real
longitudinal = XYcompl.imag
plt.contourf(longitudinal/1000.0,transverse,energy, 100, cmap="gist_heat", norm=mpl.colors.LogNorm())
plt.gca().set_axis_bgcolor("#3E0000")
plt.xlabel("$z \; (\mathrm{\mu m}$)")
plt.ylabel("$x$ (nm)")
fname = "Figures/profile2D_xyplane.jpeg"
plt.savefig(fname, bbox_inches="tight", dpi=800)
print ("Figure written to %s"%(fname))
return longitudinal, transverse, energy
示例12: plot_vert_vgradrho_rho_diff
def plot_vert_vgradrho_rho_diff(show=True, save=False):
plt.close('all')
plt.figure()
rho1 = np.array(g1a['Rho'])
vgradrho1 = \
g1a['V!Dn!N (up)']\
*cr.calc_rusanov_alts_ausm(g1a['Altitude'],rho1)/g1a['Rho']
rho2 = np.array(g2a['Rho'])
vgradrho2 = \
g2a['V!Dn!N (up)']\
*cr.calc_rusanov_alts_ausm(g2a['Altitude'],rho2)/g2a['Rho']
ilt = np.argmin(np.abs(g1a['LT'][2:-2, 0, 0]-whichlt))+2
vgradrho1 = vgradrho1[ilt,2:-2,2:-2]
vgradrho2 = vgradrho2[ilt,2:-2,2:-2]
dvgradrho = np.array(vgradrho1-vgradrho2).T
lat = np.array(g1a['dLat'][ilt, 2:-2, 2:-2]).T
alt = np.array(g1a['Altitude'][ilt, 2:-2, 2:-2]/1000).T
plt.contourf(lat, alt, dvgradrho, levels=np.linspace(-1, 1, 21)*1e-4,
cmap='seismic', extend='both')
plt.xlim(-90, -40)
plt.xlabel('Latitude')
plt.ylabel('Altitude')
plt.text(0.5, 0.95, 'Time: '+tstring, fontsize=15,
horizontalalignment='center', transform=plt.gcf().transFigure)
if show:
plt.show()
if save:
plt.savefig(spath+'06_vert_vgradrho_rho_diff_%s.pdf' % tstring)
return
示例13: plot_vert_divv_diff
def plot_vert_divv_diff(show=True, save=False):
plt.close('all')
plt.figure()
velr = np.array(g1a['V!Dn!N (up)'])
divv1 = cr.calc_div_vert(g1a['Altitude'], velr)
velr = np.array(g2a['V!Dn!N (up)'])
divv2 = cr.calc_div_vert(g2a['Altitude'], velr)
ilt = np.argmin(np.abs(g1a['LT'][2:-2, 0, 0]-whichlt))+2
divv1 = divv1[ilt,2:-2,2:-2]
divv2 = divv2[ilt,2:-2,2:-2]
ddivv = np.array(divv1-divv2).T
lat = np.array(g1a['dLat'][ilt, 2:-2, 2:-2]).T
alt = np.array(g1a['Altitude'][ilt, 2:-2, 2:-2]/1000).T
plt.contourf(lat, alt, ddivv, levels=np.linspace(-1, 1, 21)*1e-4,
cmap='seismic', extend='both')
plt.xlim(-90, -40)
plt.xlabel('Latitude')
plt.ylabel('Altitude')
plt.text(0.5, 0.95, 'Time: '+tstring, fontsize=15,
horizontalalignment='center', transform=plt.gcf().transFigure)
if show:
plt.show()
if save:
plt.savefig(spath+'04_vert_divv_diff%s.pdf' % tstring)
return
示例14: plot
def plot(self):
bounds = self.bounds
x1 = np.linspace(bounds[0][0], bounds[0][1], 100)
x2 = np.linspace(bounds[1][0], bounds[1][1], 100)
X1, X2 = np.meshgrid(x1, x2)
X = np.hstack((X1.reshape(100*100,1),X2.reshape(100*100,1)))
Y = self.f(X)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(X1, X2, Y.reshape((100,100)), rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
ax.set_title(self.name)
plt.figure()
size_color = np.linspace(-1.5, 6.0, 100, endpoint=True)
plt.contourf(X1, X2, Y.reshape((100,100)),size_color)
if (len(self.min)>1):
plt.plot(np.array(self.min)[:,0], np.array(self.min)[:,1], 'w.', markersize=20, label=u'Observations')
else:
plt.plot(self.min[0][0], self.min[0][1], 'w.', markersize=20, label=u'Observations')
plt.colorbar()
plt.xlabel('X1')
plt.ylabel('X2')
plt.title(self.name)
# plt.show()
savefig("object_true_2d.pdf")
示例15: plot_decision_regions
def plot_decision_regions(
X, y, classifier, xlab="X", ylab="y", legend_loc="upper left", test_idx=None, resolution=0.02
):
# setup marker generator and color map
markers = ("s", "x", "o", "^", "v")
colors = ("red", "blue", "lightgreen", "gray", "cyan")
cmap = ListedColormap(colors[: len(np.unique(y))])
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
X_test, y_test = X[test_idx, :], y[test_idx]
# plot class samples
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl)
if test_idx:
X_test, y_test = X[test_idx, :], y[test_idx]
plt.scatter(X_test[:, 0], X_test[:, 1], c="", alpha=1.0, linewidth=1, marker="o", s=55, label="test set")
plt.xlabel(xlab)
plt.ylabel(ylab)
plt.legend(loc=legend_loc)