当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.axvline函数代码示例

本文整理汇总了Python中matplotlib.pyplot.axvline函数的典型用法代码示例。如果您正苦于以下问题:Python axvline函数的具体用法?Python axvline怎么用?Python axvline使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了axvline函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_scatter

def plot_scatter(points, rects, level_id, fig_area=FIG_AREA, grid_area=GRID_AREA, with_axis=False, with_img=True, img_alpha=1.0):
    rect = rects[level_id]
    top_lat, top_lng, bot_lat, bot_lng = get_rect_bounds(rect)

    plevel = get_points_level(points, rects, level_id)
    ax = plevel.plot('lng', 'lat', 'scatter')
    plt.xlim(left=top_lng, right=bot_lng)
    plt.ylim(top=top_lat, bottom=bot_lat)

    if with_img:
        img = plt.imread('/data/images/level%s.png' % level_id)
        plt.imshow(img, zorder=0, alpha=img_alpha, extent=[top_lng, bot_lng, bot_lat, top_lat])

    width, height = get_rect_width_height(rect)
    fig_width, fig_height = get_fig_width_height(width, height, fig_area)
    plt.gcf().set_size_inches(fig_width, fig_height)

    if grid_area:
        grid_horiz, grid_vertic = get_grids(rects, level_id, grid_area, fig_area)
        for lat in grid_horiz:
            plt.axhline(lat, color=COLOR_GRID, lw=GRID_LW)
        for lng in grid_vertic:
            plt.axvline(lng, color=COLOR_GRID, lw=GRID_LW)

    if not with_axis:
        ax.set_axis_off()
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)

    return ax
开发者ID:tentangdata,项目名称:pinisi,代码行数:30,代码来源:functions.py

示例2: plotresult

def plotresult(i=0, j=101, step=1):
    import matplotlib.pyplot as mpl
    from numpy import arange

    res = getevaluation(i, j, step)
    x = [k / 100.0 for k in range(i, j, step)]
    nbcurve = len(res[0])
    nres = [[] for i in xrange(nbcurve)]
    mres = []
    maxofmin = -1, 0.01
    for kindex, kres in enumerate(res):
        minv = min(kres.values())
        if minv > maxofmin[1]:
            maxofmin = kindex, minv
        lres = [(i, j) for i, j in kres.items()]
        lres.sort(lambda x, y: cmp(x[0], y[0]))
        for i, v in enumerate(lres):
            nres[i].append(v[1])
        mres.append(sum([j for i, j in lres]) / nbcurve)
    print maxofmin
    for y in nres:
        mpl.plot(x, y)
    mpl.plot(x, mres, linewidth=2)
    mpl.ylim(0.5, 1)
    mpl.xlim(0, 1)
    mpl.axhline(0.8)
    mpl.axvline(0.77)
    mpl.xticks(arange(0, 1.1, 0.1))
    mpl.yticks(arange(0.5, 1.04, 0.05))
    mpl.show()
开发者ID:openalea,项目名称:lpy,代码行数:30,代码来源:evalrange.py

示例3: draw_img_for_viewing_ice

	def draw_img_for_viewing_ice(self):
		#print "Press 'p' to save PNG."
		global colmax
		global colmin
		fig = P.figure(num=None, figsize=(13.5, 5), dpi=100, facecolor='w', edgecolor='k')
		cid1 = fig.canvas.mpl_connect('key_press_event', self.on_keypress_for_viewing)
		cid2 = fig.canvas.mpl_connect('button_press_event', self.on_click)
		canvas = fig.add_subplot(121)
		canvas.set_title(self.filename)
		self.axes = P.imshow(self.inarr, origin='lower', vmax = colmax, vmin = colmin)
		self.colbar = P.colorbar(self.axes, pad=0.01)
		self.orglims = self.axes.get_clim()
		canvas = fig.add_subplot(122)
		canvas.set_title("Angular Average")
		
		maxAngAvg = (self.inangavg).max()
		numQLabels = len(eDD.iceHInvAngQ.keys())+1
		labelPosition = maxAngAvg/numQLabels
		for i,j in eDD.iceHInvAngQ.iteritems():
			P.axvline(j,0,colmax,color='r')
			P.text(j,labelPosition,str(i), rotation="45")
			labelPosition += maxAngAvg/numQLabels
			
		P.plot(self.inangavgQ, self.inangavg)
		P.xlabel("Q (A-1)")
		P.ylabel("I(Q) (ADU/srad)")
		pngtag = original_dir + "peakfit-gdvn_%s.png" % (self.filename)
		P.savefig(pngtag)
		print "%s saved." % (pngtag)
		P.close()
开发者ID:sellberg,项目名称:iceFinderCampaign,代码行数:30,代码来源:compareAverageRuns-aerojet.py

示例4: mcgehee

def mcgehee():
    st = TransferMatrix()
    st.add_layer(0, 1.4504)
    st.add_layer(110, 1.7704 + 0.01161j)
    st.add_layer(35, 1.4621 + 0.04426j)
    st.add_layer(220, 2.12 + 0.3166016j)
    st.add_layer(7, 2.095 + 2.3357j)
    st.add_layer(200, 1.20252 + 7.25439j)
    st.add_layer(0, 1.20252 + 7.25439j)

    st.set_vacuum_wavelength(600)
    st.set_polarization('s')
    st.set_field('E')
    st.set_incident_angle(0, units='degrees')
    st.info()

    # Do calculations
    result = st.calc_field_structure()
    z = result['z']
    y = result['field_squared']

    # Plot results
    plt.figure()
    plt.plot(z, y)
    for z in st.get_layer_boundaries()[:-1]:
        plt.axvline(x=z, color='k', lw=2)
    plt.xlabel('Position in Device (nm)')
    plt.ylabel('Normalized |E|$^2$ Intensity ($|E(z)/E_0(0)|^2$)')
    if SAVE:
        plt.savefig('../Images/McGehee structure.png', dpi=300)
    plt.show()
开发者ID:mn14tm,项目名称:Lifetmm,代码行数:31,代码来源:test.py

示例5: plot_monthly_dollars_by_party

def plot_monthly_dollars_by_party(party, color='blue', start_date=None, end_date=None, election_date=None):
	monthly_dollars = monthly_dollars_by_party(party, start_date, end_date)
	months, dollars = monthly_dollars.keys(), monthly_dollars.values()

	plt.plot(range(len(months)), dollars, 'o-', color=color, label=party)

	# label every other month
	xtick_locs = range(0, len(months), 2)
	xtick_labels = [d.strftime('%B %Y') for d in months[::2]]
	plt.xticks(xtick_locs, xtick_labels, rotation=70)

	# format for dollars
	a = plt.gca()
	a.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x), ',')))

	# show election day
	if election_date:
		first_date = months[0]
		date_diff = election_date - first_date
		months_diff = date_diff.days / 30.0

		plt.axvline(months_diff, color='black', ls='dashed', label='Election Day')

	plt.xlim((0, len(months)-1))
	plt.ylabel('Total Monthly Contributions ($)')
	plt.title('Total Monthly Contributions')
	plt.legend(loc='upper right')
开发者ID:idgetto,项目名称:DataScience16CTW,代码行数:27,代码来源:contributions.py

示例6: t90_dist

    def t90_dist(self):
        """ Plots T90 distribution, gives the mean and median T90 values of the
        sample and calculates the number of short, long bursts in the sample """
        t90s = []
        for i in range(0,len(self.t90s),1):
            try:
                t90s.append(float(self.t90s[i]))

            except ValueError:
                continue

        t90s = np.array(t90s)
        mean_t90 = np.mean(t90s)
        median_t90 = np.median(t90s)
        print('Mean T90 time =',mean_t90,'s')
        print('Median T90 time=',median_t90,'s')
        mask = np.ma.masked_where(t90s < 2, t90s)
        short_t90s = t90s[mask == False]
        long_t90s = t90s[mask != False]
        print('Number of Short/Long GRBs =',len(short_t90s),'/',len(long_t90s))

        plt.figure()
        plt.xlabel('T$_{90}$ (s)')
        plt.ylabel('Number of GRBs')
        plt.xscale('log')
        minimum, maximum, = min(short_t90s), max(long_t90s)
        plt.axvline(mean_t90,color='red',linestyle='-')
        plt.axvline(median_t90,color='blue',linestyle='-')
        plt.hist(t90s,bins= 10**np.linspace(np.log10(minimum),np.log10(maximum),20),color='grey',alpha=0.5)
        plt.show()
开发者ID:jtwm1,项目名称:adampy,代码行数:30,代码来源:swift_functions.py

示例7: bFctV0

def bFctV0(n1, n2, rho, b, V0, modes, delta):
    NA = sqrt(n1**2 - n2**2)

    pyplot.figure()
    sim = Simulator(delta=delta)

    sim.setWavelength(Wavelength(k0=(v0 / b / NA)) for v0 in V0)
    sim.setMaterials(Fixed, Fixed, Fixed)
    sim.setRadii((rho * b,), (b,))
    sim.setMaterialsParams((n2,), (n1,), (n2,))

    fiber = fixedFiber(0, [rho * b, b], [n2, n1, n2])

    for m in modes:
        neff = sim.getNeff(m)
        bnorm = (neff - n2) / (n1 - n2)

        pyplot.plot(V0, bnorm, color=COLORS[m.family], label=str(m))

        c = fiber.cutoffV0(m)
        pyplot.axvline(c, color=COLORS[m.family], ls='--')

    pyplot.xlim((0, V0[-1]))
    pyplot.title("$n_1 = {}, n_2 = {}, \\rho = {}$".format(n1, n2, rho))
    pyplot.xlabel("Normalized frequency ($V_0$)")
    pyplot.ylabel("Normalized propagation constant ($\widetilde{\\beta}$)")
开发者ID:cbrunet,项目名称:fibermodes,代码行数:26,代码来源:bv0highcontrast.py

示例8: createHistogram

def createHistogram(df, pic, bins=45, rates=False):
    data=mergeMatrix(df, pic)
    matrix=sortMatrix(df, pic)


    density = gaussian_kde(data)
    xs = np.linspace(min(data), max(data), max(data))
    density.covariance_factor = lambda : .25
    density._compute_covariance()
    #xs = np.linspace(min(data), max(data), 1000)

    fig,ax1 = plt.subplots()
    #plt.xlim([0, 4000])
    plt.hist(data, bins=bins, range=[-500, 4000], histtype='stepfilled', color='grey', alpha=0.5)
    lims = plt.ylim()
    height=lims[1]-2
    for i in range(0,len(matrix)):
        currentRow = matrix[i][np.nonzero(matrix[i])]
        plt.plot(currentRow, np.ones(len(currentRow))*height, '|', color='black')
        height -= 2

    plt.axvline(x=0, color='red', linestyle='dashed')
    #plt.axvline(x=1000, color='black', linestyle='dashed')
    #plt.axvline(x=2000, color='black', linestyle='dashed')
    #plt.axvline(x=3000, color='black', linestyle='dashed')

    if rates:
        rates = get_rate(df, pic)
        ax1.text(-250, 4, str(rates[0]), size=15, ha='center', va='center', color='green')
        ax1.text(500, 4, str(rates[1]), size=15, ha='center', va='center', color='green')
        ax1.text(1500, 4, str(rates[2]), size=15, ha='center', va='center', color='green')
        ax1.text(2500, 4, str(rates[3]), size=15, ha='center', va='center', color='green')
        ax1.text(3500, 4, str(rates[4])+ r' $\frac{\mathsf{Spikes}}{\mathsf{s}}$', size=15, ha='center', va='center', color='green')
    plt.ylim([0,lims[1]+5])
    plt.xlim([0, 4000])
    plt.title('Histogram for ' + str(pic))
    ax1.set_xticklabels([-500, 'Start\nStimulus', 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000])
    plt.xlabel('Time (ms)')
    plt.ylabel('Counts (Spikes)')


    print lims
    arr_hand = getPic(pic)
    imagebox = OffsetImage(arr_hand, zoom=.3)
    xy = [3200, lims[1]+5]               # coordinates to position this image

    ab = AnnotationBbox(imagebox, xy, xybox=(30., -30.), xycoords='data',boxcoords="offset points")
    ax1.add_artist(ab)

    ax2 = ax1.twinx() #Necessary for multiple y-axes

    #Use ax2.plot to draw the hypnogram.  Be sure your x values are in seconds
    ax2.plot(xs, density(xs) , 'g', drawstyle='steps')
    plt.ylim([0,0.001])
    plt.yticks([0.0001,0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007, 0.0008, 0.0009])
    ax2.set_yticklabels([1,2,3,4, 5, 6, 7, 8, 9])
    plt.ylabel(r'Density ($\cdot \mathsf{10^{-4}}$)', color='green')
    plt.gcf().subplots_adjust(right=0.89)
    plt.gcf().subplots_adjust(bottom=0.2)
    plt.savefig(pic, dpi=150)
开发者ID:sagar87,项目名称:Exploring-Neural-Data-Final-Project,代码行数:60,代码来源:final.py

示例9: test_airy_2d

def test_airy_2d(display=False):
    """ Test 2D airy function vs 1D function; both
    should yield the exact same results for a 1D cut across the 2d function.
    And we've already tested the 1D above...
    """

    fn2d = airy_2d(diameter=1.0, wavelength=1e-6, shape=(511, 511), pixelscale=0.010)
    r, fn1d = airy_1d(diameter=1.0, wavelength=1e-6, length=256, pixelscale=0.010)

    cut = fn2d[255, 255:].flatten()
    print(cut.shape)

    if display:
        
        plt.subplot(211)

        plt.semilogy(r, fn1d, label='1D')

        plt.semilogy(r, cut, label='2D', color='black', ls='--')

        plt.legend(loc='upper right')
        plt.axvline(0.251643, color='red', ls='--')
        plt.ylabel('Intensity relative to peak')
        plt.xlabel('Separation in $\lambda/D$')
 
        ax=plt.subplot(212)
        plt.plot(r, cut-fn1d)
        ax.set_ylim(-1e-8, 1e-8)
        plt.ylabel('Difference')
        plt.xlabel('Separation in $\lambda/D$')

    #print fn1d[0], cut[0]
    #print np.abs(fn1d-cut) #< 1e-9
    assert np.all( np.abs(fn1d-cut) < 1e-9)
开发者ID:josePhoenix,项目名称:poppy,代码行数:34,代码来源:test_misc.py

示例10: guiding_electric_field

def guiding_electric_field():
    # Create structure
    st = TransferMatrix()
    st.set_vacuum_wavelength(lam0)
    st.add_layer(1.5 * lam0, air)
    st.add_layer(lam0, si)
    st.add_layer(1.5 * lam0, air)
    st.info()

    st.set_polarization('TM')
    st.set_field('H')
    st.set_leaky_or_guiding('guiding')
    alpha = st.calc_guided_modes(normalised=True)
    plt.figure()
    for i, a in enumerate(alpha):
        st.set_guided_mode(a)
        result = st.calc_field_structure()
        z = result['z']
        # z = st.calc_z_to_lambda(z)
        E = result['field']
        # Normalise fields
        # E /= max(E)
        plt.plot(z, abs(E) ** 2, label=i)

    for z in st.get_layer_boundaries()[:-1]:
        # z = st.calc_z_to_lambda(z)
        plt.axvline(x=z, color='k', lw=1, ls='--')
    plt.legend(title='Mode index')
    if SAVE:
        plt.savefig('../Images/guided fields.png', dpi=300)
    plt.show()
开发者ID:mn14tm,项目名称:Lifetmm,代码行数:31,代码来源:test.py

示例11: test

def test():
    # Create structure
    st = LifetimeTmm()
    st.set_vacuum_wavelength(lam0)
    # st.add_layer(1e3, si)
    st.add_layer(1900, sio2)
    st.add_layer(100, si)
    st.add_layer(20, sio2)
    st.add_layer(100, si)
    # st.add_layer(1900, sio2)
    st.add_layer(1e3, air)
    st.info()

    st.set_polarization('TM')
    st.set_field('H')
    st.set_leaky_or_guiding('guiding')
    alpha = st.calc_guided_modes(normalised=True)
    st.set_guided_mode(alpha[0])
    result = st.calc_field_structure()
    z = result['z']
    z = st.calc_z_to_lambda(z)
    E = result['field']
    # Normalise fields
    # E /= max(E)

    plt.figure()
    plt.plot(z, abs(E) ** 2)
    for z in st.get_layer_boundaries()[:-1]:
        z = st.calc_z_to_lambda(z)
        plt.axvline(x=z, color='k', lw=1, ls='--')
    plt.show()
开发者ID:mn14tm,项目名称:Lifetmm,代码行数:31,代码来源:test.py

示例12: psplot

def psplot(pslist, nbins = 0, filename=None, figsize=(12, 8), showlegend=True):
		"""
		Plots a list of PS objects.
		If the PS has a slope, it is plotted as well.
		
		if nbins > 0, I bin the spectra.
		
		add option for linear plot ?
		"""
		
		plt.figure(figsize=figsize)
		for ps in pslist:
		
			
			if not np.all(np.isfinite(np.log10(ps.p))):
				print "No power to plot (probably flat curve !), skipping this one."
				continue
			# We bin the points
			
			if nbins > 0:
				logf = np.log10(ps.f[1:]) # we remove the first one
				logbins = np.linspace(np.min(logf), np.max(logf), nbins+1) # So nbins +1 numbers here.
				bins = 10**logbins
				bincenters = 0.5*(bins[:-1] + bins[1:]) # nbins centers
				logbins[0] -= 1.0
				logbins[-1] += 1.0
				binindexes = np.digitize(logf, logbins) # binindexes go from 1 to nbins+1
				binvals = []
				binstds = []
				for i in range(1, nbins+1):
					vals = ps.p[1:][binindexes == i]
					binvals.append(np.mean(vals))
					binstds.append(np.std(vals)/np.sqrt(vals.size))
			
				bincenters = np.array(bincenters)
				binvals = np.array(binvals)
				binstds = np.array(binstds)
			
				plt.loglog(bincenters, binvals, marker=".", linestyle="-", color=ps.plotcolour, label = "%s" % (ps))
			
			else:
				plt.loglog(ps.f, ps.p, marker=".", linestyle="None", color=ps.plotcolour, label = "%s" % (ps))
			if ps.slope != None:
				plt.loglog(ps.slope["f"], ps.slope["p"], marker="None", color=ps.plotcolour, label = "Slope %s = %.3f" % (ps, ps.slope["slope"]))
				plt.axvline(ps.slope["fmin"], color = ps.plotcolour, dashes = (5,5))
				plt.axvline(ps.slope["fmax"], color = ps.plotcolour, dashes = (5,5))
		
		plt.xlabel("Frequency [1/days]")
		plt.ylabel("Power")
		
		if showlegend:
			plt.legend()
		
		#plt.text(np.min(10**fitx), np.max(10**pfit), "Log slope : %.2f" % (popt[0]), color="red")
		
		
		if filename:
			plt.save(filename)
		else:
			plt.show()
开发者ID:COSMOGRAIL,项目名称:PyCS,代码行数:60,代码来源:src.py

示例13: multi_plot_grid

def multi_plot_grid(sig, num = 4, path = None, changes = None):
    """
    Plot in a grid structure.
    If path "/.../Plot.png" is provided then output plot will be saved into the file.
    If the list changes is provided thet vertical red lines will be plotted to mark locations.
    """
    n =len(sig)
    md = n % num
    wdth = n / num
    for i in range(1, num+1):
        plt.subplot(num/2, num/2, i)
        plt.plot(sig)
        if changes != None:
            for j,e in enumerate(changes):
                plt.axvline(x = e, color = "red")
        if i == num:
            plt.xlim((i-1)*wdth, i * wdth + md)
        else:
            plt.xlim((i-1)*wdth, i * wdth)
        plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))
    if path:
        plt.savefig(path, dpi = 700)
        print "Figure is saved into " + path
    else:
        plt.show()
开发者ID:av-maslov,项目名称:example_change-detection,代码行数:25,代码来源:utils.py

示例14: TCP_plot

def TCP_plot(no_ind_plots, label):
    #no_ind_plots = 50

    ## individual plots cannot be more than total patients
    if(no_ind_plots>n):
        no_ind_plots=n

    ## want to select the individual plots randomly from those calcualted...
    ind_plots = np.random.choice(len(TCPs),no_ind_plots, replace=False)

    ## individuals (specified number of plots chosen)
    for i in ind_plots:
        plt.plot(nom_doses,TCPs[i], color = 'grey', alpha = 0.5)
    ## population
    plt.plot(nom_doses,TCP_pop, color='black', linewidth='2', alpha=0.5)
    plt.plot(nom_doses,TCP_pop, marker = 'o', ls='none', label=label)

    ## plot formatting
    plt.xlim(0,max(nom_doses))
    plt.ylim(0,1.0)
    plt.xlabel('Dose (Gy)')
    plt.ylabel('TCP')
    plt.title('TCPs')
    #plt.legend(loc = 'best', fontsize = 'medium', framealpha = 1)
    plt.axvline(d_interest, color = 'black', ls='--',)
    plt.axhline(TCP_pop[frac_interest-1], color='black', ls='--')

    ## add labels with TCP at dose of interest
    text_string = ('Pop. TCP = ' + str(round(TCP_cure_at_d_interest,2)) + ' % at ' + str(d_interest) + 'Gy')
    plt.text(5,0.4,text_string, backgroundcolor='white')
    plt.legend(loc = 'lower left',numpoints=1)

    plt.show()
开发者ID:mbolt01,项目名称:InitialCode,代码行数:33,代码来源:TCP-updated-multiple-parameter-variations-Re-order-AddOPTrend.py

示例15: make_scatter

def make_scatter(n, ratings):
    """Makes a scatter plot of n vs ratings
    """
    # File name
    vline   = "_cutoff-%s" % args.n if args.n else ""
    log     = "_log" if args.log else ""
    outfile = args.outbase + "_scatter_n-vs-rating%s%s.pdf" % \
              (vline, log)
   
    fig, ax  = plt.subplots()  
    ax.scatter(n, jitter(ratings), color="#e34a33", alpha=0.3)
   
    if args.log:
        ax.set_xscale("log")
        
    ax.set_xlim([0,np.max(n)])
    ax.set_ylim([0,5.5])

    ax.set_xlabel("Number of reviews (n)")
    ax.set_ylabel("Average rating (stars)")

    if args.n: # vline if specified
        plt.axvline(args.n, color="black", linestyle="--")
        ax.text(args.n + 50, 0.5, "cutoff", fontweight="bold") 

    fig.savefig(outfile)

    print "Scatter plot made at \n%s" % outfile 
    return
开发者ID:ccwilliaster,项目名称:yelp-ratings-over-n,代码行数:29,代码来源:plot_n-vs-rating.py


注:本文中的matplotlib.pyplot.axvline函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。