本文整理汇总了Python中matplotlib.pyplot.axes函数的典型用法代码示例。如果您正苦于以下问题:Python axes函数的具体用法?Python axes怎么用?Python axes使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了axes函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_shape
def make_shape(pts, max_output_len=100):
"""
Args:
pts: a tuple of points (x,y) to be interpolated
max_output_len: the max number of points in the interpolated curve
Returns:
the pair of interpolated points (xnew,ynew)
Raises:
ValueError: pts defined a self-intersecting curve
"""
assert len(pts[0]) == len(pts[1])
pts = tuple(map(lambda x: np.append(x, x[0]), pts))
fit_pts = interp(pts)
if curve_intersects(fit_pts):
raise ValueError("Curve is self-intersecting")
if PLOT_SHAPE:
plt.figure()
plt.plot(pts[0],pts[1], 'x')
plt.plot(fit_pts[0],fit_pts[1])
plt.axes().set_aspect('equal', 'datalim')
plt.show()
sparse_pts = tuple(map(lambda ls: ls[::len(fit_pts[0]) // max_output_len + 1], fit_pts))
return sparse_pts
示例2: drawVectors
def drawVectors(transformed_features, components_, columns, plt, scaled):
if not scaled:
return plt.axes() # No cheating ;-)
num_columns = len(columns)
# This funtion will project your *original* feature (columns)
# onto your principal component feature-space, so that you can
# visualize how "important" each one was in the
# multi-dimensional scaling
# Scale the principal components by the max value in
# the transformed set belonging to that component
xvector = components_[0] * max(transformed_features[:,0])
yvector = components_[1] * max(transformed_features[:,1])
## visualize projections
# Sort each column by it's length. These are your *original*
# columns, not the principal components.
important_features = { columns[i] : math.sqrt(xvector[i]**2 + yvector[i]**2) for i in range(num_columns) }
important_features = sorted(zip(important_features.values(), important_features.keys()), reverse=True)
print "Features by importance:\n", important_features
ax = plt.axes()
for i in range(num_columns):
# Use an arrow to project each original feature as a
# labeled vector on your principal component axes
plt.arrow(0, 0, xvector[i], yvector[i], color='b', width=0.0005, head_width=0.02, alpha=0.75)
plt.text(xvector[i]*1.2, yvector[i]*1.2, list(columns)[i], color='b', alpha=0.75)
return ax
示例3: display_PER
def display_PER(self):
number_of_pkts = len(self.pcap_file)
retransmission_pkts = 0
for pkt in self.pcap_file:
if (pkt[Dot11].FCfield & 0x8) != 0:
retransmission_pkts += 1
ans = (retransmission_pkts / number_of_pkts)*100
ans = float("%.2f" % ans)
labels = ['Standard packets', 'Retransmitted packets']
sizes = [100.0 - ans,ans]
colors = ['g', 'firebrick']
# Make a pie graph
plt.clf()
plt.figure(num=1, figsize=(8, 6))
plt.axes(aspect=1)
plt.suptitle('Retransmitted packet', fontsize=14, fontweight='bold')
plt.rcParams.update({'font.size': 13})
plt.pie(sizes, labels=labels, autopct='%.2f%%', startangle=60, colors=colors, pctdistance=0.7, labeldistance=1.2)
plt.show()
示例4: POST
def POST(self):
data = web.data()
query_data=json.loads(data)
start_time=query_data["start_time"]
end_time=query_data["end_time"]
parameter=query_data["parameter"]
query="SELECT "+parameter+",timestamp FROM jplug_data WHERE timestamp BETWEEN "+str(start_time)+" AND "+str(end_time)
retrieved_data=list(db.query(query))
LEN=len(retrieved_data)
x=[0]*LEN
y=[0]*LEN
X=[None]*LEN
for i in range(0,LEN):
x[i]=retrieved_data[i]["timestamp"]
y[i]=retrieved_data[i][parameter]
X[i]=datetime.datetime.fromtimestamp(x[i],pytz.timezone(TIMEZONE))
#print retrieved_data["timestamp"]
with lock:
figure = plt.gcf() # get current figure
plt.axes().relim()
plt.title(parameter+" vs Time")
plt.xlabel("Time")
plt.ylabel(units[parameter])
plt.axes().autoscale_view(True,True,True)
figure.autofmt_xdate()
plt.plot(X,y)
filename=randomword(12)+".jpg"
plt.savefig("/home/muc/Desktop/Deployment/jplug_view_data/static/images/"+filename, bbox_inches=0,dpi=100)
plt.close()
web.header('Content-Type', 'application/json')
return json.dumps({"filename":filename})
示例5: _scatter
def _scatter(actual, prediction, args):
plt.figure()
plt.plot(actual, prediction, 'b'+args['plot_scatter_marker'])
xmin=min(actual)
xmax=max(actual)
ymin=min(prediction)
ymax=max(prediction)
diagxmin=min(math.fabs(x) for x in actual)
diagymin=min(math.fabs(y) for y in prediction)
diagpmin=min(diagxmin,diagymin)
pmin=min(xmin,ymin)
pmax=max(xmax,ymax)
plt.plot([diagpmin,pmax],[diagpmin,pmax],'k-')
if args['plot_identifier'] != 'NoName':
plt.title(args['plot_identifier'])
plt.xlabel('Observed')
plt.ylabel('Modeled')
if args['plot_performance_log'] == True:
plt.yscale('log')
plt.xscale('log')
if args['plot_scatter_free'] != True:
plt.axes().set_aspect('equal')
if args['plot_dump'] == True:
pfname=os.path.join(args['plot_dir'],args['plot_identifier']+'_eiger_scatter.pdf')
plt.savefig(pfname,format="pdf")
else:
plt.show()
示例6: plot_q_qhat
def plot_q_qhat(q, t):
# Plot Potential Vorticity
plt.clf()
plt.subplot(2,1,1)
plt.pcolormesh(xx/1e3,yy/1e3,q)
plt.colorbar()
plt.axes([-Lx/2e3, Lx/2e3, -Ly/2e3, Ly/2e3])
name = "PV at t = %5.2f" % (t/(3600.0*24.0))
plt.title(name)
# compute power spectrum and shift ffts
qe = np.vstack((q0,-np.flipud(q)))
qhat = np.absolute(fftn(qe))
kx = fftshift((parms.ikx/parms.ikx[0,1]).real)
ky = fftshift((parms.iky/parms.iky[1,0]).real)
qhat = fftshift(qhat)
Sx, Sy = int(parms.Nx/2), parms.Ny
Sk = 1.5
# Plot power spectrum
plt.subplot(2,1,2)
#plt.pcolor(kx[Sy:Sy+20,Sx:Sx+20],ky[Sy:Sy+20,Sx:Sx+20],qhat[Sy:Sy+20,Sx:Sx+20])
plt.pcolor(kx[Sy:int(Sk*Sy),Sx:int(Sk*Sx)],ky[Sy:int(Sk*Sy),Sx:int(Sk*Sx)],
qhat[Sy:int(Sk*Sy),Sx:int(Sk*Sx)])
plt.axis([0, 10, 0, 10])
plt.colorbar()
name = "PS at t = %5.2f" % (t/(3600.0*24.0))
plt.title(name)
plt.draw()
示例7: test_plot_raw_psd
def test_plot_raw_psd():
"""Test plotting of raw psds."""
import matplotlib.pyplot as plt
raw = _get_raw()
# normal mode
raw.plot_psd(tmax=2.0)
# specific mode
picks = pick_types(raw.info, meg='mag', eeg=False)[:4]
raw.plot_psd(picks=picks, area_mode='range')
ax = plt.axes()
# if ax is supplied:
assert_raises(ValueError, raw.plot_psd, ax=ax)
raw.plot_psd(picks=picks, ax=ax)
plt.close('all')
ax = plt.axes()
assert_raises(ValueError, raw.plot_psd, ax=ax)
ax = [ax, plt.axes()]
raw.plot_psd(ax=ax)
plt.close('all')
# topo psd
raw.plot_psd_topo()
plt.close('all')
# with a flat channel
raw[5, :] = 0
assert_raises(ValueError, raw.plot_psd)
示例8: plot_skew
def plot_skew(y_cv, preds, N = 50, Nmax = 20, start=0, detailed=True):
'''
plot the roc curves with different skews
to see what the distribution of the data
is ...
'''
powers = np.linspace(start, N, Nmax)[1:]
aucs = []
if detailed:
plot_distribution(y_cv, preds**N)
for xx, i in enumerate(powers):
fpr, tpr, thresholds = metrics.roc_curve(y_cv, preds**i)
roc_auc = metrics.auc(fpr, tpr)
if detailed:
plot_roc(fpr, tpr, roc_auc, newPlot=(xx==0), label='%.1f'%i, color=(i/N,0.5,1-i/N))
aucs.append( roc_auc )
if detailed:
plt.legend()
plt.figure(figsize=(4, 3))
plt.axes([0.17, 0.18, 0.94-0.17, 0.96-0.18])
plt.plot(powers, aucs, 's')
intPowers = np.linspace(start, N, 100)[1:]
# plt.plot(intPowers, np.poly1d(np.polyfit(powers, aucs, 2))( intPowers ), color='black' )
plt.xlabel('power')
plt.ylabel('AUC')
return powers, aucs
示例9: display
def display(ncube, ngrid, path):
# Time delay before displaying new plot.
delay = 0.001
# Determines the number of files over which to loop.
# NOTE: These files must be the only files in the directory for this approach to work.
files = os.listdir(path)
numFiles = len(files)
# Prepares the plot to be displayed.
pl.ion()
pl.figure(1)
# Loops over all files and extracts the component-based data.
for i in xrange(1, numFiles + 1):
x, y, z, vx, vy, vz = np.genfromtxt(path + "TimeStamp" + str(i) + ".txt", dtype = float, unpack = True)
# Plots x positions against y positions to get an xy-plane slice.
pl.scatter(x, y, s = 3)
pl.axes().set_xlim((0., float(ngrid * ncube)))
pl.axes().set_ylim((0., float(ngrid * ncube)))
pl.xlabel("X Position")
pl.ylabel("Y Position")
pl.title("N-Body Simulation: 2D Slice")
# Draws the plot and then delays the next iteration.
pl.draw()
time.sleep(delay)
pl.clf()
# Closes the plot at the very end.
pl.close(1)
示例10: add_clusters
def add_clusters(self, cl_class, num_clusters, cl_color):
mypatches=[]
for i,(x,y) in enumerate(self.coords):
if cl_class[i] == Cluster.NO_CLUSTER:
continue
if self.lattice == Lattice.Hex:
patch = RegularPolygon((x,-y), numVertices=6, radius=3,
facecolor=cl_color[cl_class[i] - 1],
edgecolor='none')
else:
patch = Rectangle((x, -y), 5.2, 5.2,
facecolor=cl_color[cl_class[i] - 1],
edgecolor='none')
mypatches.append(patch)
p = PatchCollection(mypatches, match_original=True)
self.ax.add_collection(p)
self.ax.autoscale_view()
plt.axes().set_aspect('equal', 'datalim')
# Double the size of the canvas
current_figure = plt.gcf()
w, h = current_figure.get_size_inches()
current_figure.set_size_inches(w*2, h*2)
# Shrink current axis by 20% to make space for the legend
box = self.ax.get_position()
self.ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
handles = []
for i in range(num_clusters):
handles.append(plt.Line2D((0,1),(0,0), color=cl_color[i]))
plt.legend(handles, [ "cluster " + str(x) for x in range(1, num_clusters + 1)],
loc='center left', bbox_to_anchor=(1, 0.5))
示例11: display
def display(workspace, **params):
def update(val):
vmax = smax.val
vmin = smin.val
im.set_clim(vmax=vmax, vmin=vmin)
fig.canvas.draw_idle()
fig = pylab.figure()
'''displays a gather using imshow'''
vmax = np.amax(workspace)
vmin = np.amin(workspace)
im = pylab.imshow(workspace.T, aspect='auto', cmap='Greys', vmax =vmax, vmin=vmin)
pylab.colorbar()
axcolor = 'lightgoldenrodyellow'
axmax = pylab.axes([0.08, 0.06, 0.65, 0.01], axisbg=axcolor) #rect = [left, bottom, width, height] in normalized (0, 1) units
smax = Slider(axmax, 'vmax', vmin, vmax, valinit=vmax)
smax.on_changed(update)
axmin = pylab.axes([0.08, 0.03, 0.65, 0.01], axisbg=axcolor) #rect = [left, bottom, width, height] in normalized (0, 1) units
smin = Slider(axmin, 'vmin', vmin, vmax, valinit=vmin)
smin.on_changed(update)
smin.on_changed(update)
pylab.show()
示例12: generateToy
def generateToy():
print 'loading values'
if not os.path.isfile('values2.p'):
z_data = np.loadtxt('values2.dat')
pkl.dump( z_data, open( 'values2.p', "wb" ),pkl.HIGHEST_PROTOCOL )
else:
z_data = pkl.load(open('values2.p',"rb"))
print 'loaded'
#x = np.random.normal(size=1000)
z_data_subset = z_data[0:20000]
plot_range = [50,400]
print 'max',max(z_data_subset),'min',min(z_data_subset)
plt.yscale('log', nonposy='clip')
plt.axes().set_ylim(0.0000001,0.17)
hist(z_data_subset,range=plot_range,bins=100,normed=1,histtype='stepfilled',
color=['lightgrey'], label=['100 bins'])
#hist(z_data_subset,range=plot_range,bins='knuth',normed=1,histtype='step',linewidth=1.5,
# color=['navy'], label=['knuth'])
hist(z_data_subset,range=plot_range,bins='blocks',normed=1,histtype='step',linewidth=2.0,
color=['crimson'], label=['b blocks'])
plt.legend()
#plt.yscale('log', nonposy='clip')
#plt.axes().set_ylim(0.0000001,0.17)
plt.xlabel(r'$m_{\ell\ell}$ (GeV)')
plt.ylabel('A.U.')
plt.title(r'Z$\to\mu\mu$ Data')
plt.savefig('z_data_hist_comp.png')
plt.show()
示例13: make_ax3
def make_ax3():
paper_single(TW=8, AR=0.9)
f = plt.figure()
from matplotlib.ticker import NullFormatter, MaxNLocator
nullfmt = NullFormatter() # no labels
# definitions for the axes
left, width = 0.1, 0.65
bottom, height = 0.1, 0.6
bottom_h = bottom+height+0.02
left_h = left+width+0.02
rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom_h, width, 0.2]
rect_histy = [left_h, bottom, 0.2, height]
ax = plt.axes(rect_scatter)
plt.minorticks_on()
axx = plt.axes(rect_histx)
plt.minorticks_on()
axy = plt.axes(rect_histy)
plt.minorticks_on()
# no labels
axx.xaxis.set_major_formatter(nullfmt)
axy.yaxis.set_major_formatter(nullfmt)
axy.xaxis.set_major_locator(MaxNLocator(3))
axx.yaxis.set_major_locator(MaxNLocator(3))
return f,ax,axx,axy
示例14: generate
def generate(self):
# path = os.path.join(self.output_root, self.make_filename)
plt.figure()
plt.axes(**self.plot_settings['axis'])
plt.imshow(self.frames(self.data), **self.plot_settings['image'])
plt.savefig(self.path, bbox_inches="tight", pad_inches=0, format='png')
plt.close()
示例15: advance
def advance(self, t, plotresult=False):
y0 = self.concs * self.molWeight
y0 = append(y0, self.thickness)
yt = odeint(self.rightSideofODE, y0, t)
if (plotresult):
import matplotlib.pyplot as plt
plt.figure()
plt.axes([0.1, 0.1, 0.6, 0.85])
plt.semilogy(t, yt)
plt.ylabel('mass concentrations (kg/m3)')
plt.xlabel('time(s)')
#plt.legend(self.speciesnames)
for i in range(len(self.speciesnames)):
plt.annotate(
self.speciesnames[i], (t[-1], yt[-1, i]),
xytext=(20, -5),
textcoords='offset points',
arrowprops=dict(arrowstyle="-"))
plt.show()
self.thickness = yt[-1][-1]
ytt = yt[-1][:-1]
# for iii in range(len(ytt)):
# if ytt[iii]<0:
# ytt[iii]=0.
molDens = ytt / self.molWeight
self.concs = molDens
self.molFrac = molDens / sum(molDens)
self.massFrac = ytt / sum(ytt)