本文整理汇总了Python中matplotlib.pyplot.annotate函数的典型用法代码示例。如果您正苦于以下问题:Python annotate函数的具体用法?Python annotate怎么用?Python annotate使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了annotate函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_error
def plot_error(station):
fig_length = 10
fig_width = 1
background_color = '#e0e0e0'
output_file = '%s.png' % station
fig = plt.figure(facecolor=background_color, figsize =(fig_length, fig_width), dpi=100)
ax = plt.subplot(1, 1, 1)
plt.annotate('Waveforms currently unavailable', (0, 0), (250, 15), xycoords='axes fraction', textcoords='offset points', va='top')
for ylabel in ax.get_yticklabels():
ylabel.set_visible(False)
for xlabel in ax.get_xticklabels():
xlabel.set_visible(False)
ax.yaxis.set_major_locator(plt.NullLocator())
ax.yaxis.grid(False)
plt.tight_layout()
#plt.show()
plt.savefig(output_file, dpi=100, facecolor=fig.get_facecolor(), edgecolor='none', bbox_inches='tight')
plt.close()
示例2: execute_solver
def execute_solver(IMAGE_FILE):
sample4x4_crop = import_image(IMAGE_FILE)
cluster_image = get_clustering_image(sample4x4_crop)
cluster_groupings_dict = cluster_grouper(cluster_image).execute()
final = pre_process_image(IMAGE_FILE)
prediction_dict = clean_prediction_dict(get_predictions(final))
write_puzzle_file(cluster_groupings_dict,prediction_dict)
try:
solution = solve_puzzle('cv_puzzle.txt',False)
except:
return 'error'
#get image of result
fig = plt.figure(figsize=(2, 2), dpi=100,frameon=False)
plt.axis('off')
plt.imshow(sample4x4_crop, cmap=mpl.cm.Greys_r)
for k,v in solution.items():
if v == None:
return 'error'
plt.annotate('{}'.format(v), xy=(k[0]*50+12,k[1]*50+40), fontsize=14)
plt.tight_layout()
plt.savefig('static/images/solution.jpg', bbox_inches='tight', dpi=100)
#theres an issue with the saved layout, tight_layout
#doesn't appear to work so I need to apply my own cropping again
resize_final = import_image('static/images/solution.jpg',80)
imsave('static/images/solution.jpg',resize_final)
return 'good'
示例3: plot
def plot(i, pcanc, lr, pp, labelFlag, Y):
if len(str(i)) == 1:
fig = plt.figure(i)
else:
fig = plt.subplot(i)
if pcanc == 0:
plt.title(
' learning_rate: ' + str(lr)
+ ' perplexity: ' + str(pp))
print("Plotting tSNE")
else:
plt.title(
'PCA-n_components: ' + str(pcanc)
+ ' learning_rate: ' + str(lr)
+ ' perplexity: ' + str(pp))
print("Plotting PCA-tSNE")
plt.scatter(Y[:, 0], Y[:, 1], c=colors)
if labelFlag == 1:
for label, cx, cy in zip(y, Y[:, 0], Y[:, 1]):
plt.annotate(
label.decode('utf-8'),
xy = (cx, cy),
xytext = (-10, 10),
fontproperties=font,
textcoords = 'offset points', ha = 'right', va = 'bottom',
bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.9))
#arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')
print("Done.")
示例4: main
def main():
svd = TruncatedSVD()
Z = svd.fit_transform(X)
plt.scatter(Z[:,0], Z[:,1])
for i in xrange(D):
plt.annotate(s=index_word_map[i], xy=(Z[i,0], Z[i,1]))
plt.show()
示例5: debugFormicMetaGraph
def debugFormicMetaGraph (fmg, mazeLong):
"""
Format a output for pyplot that renders the formic meta graph
"""
# import
try:
import matplotlib.pyplot as plt
except:
debug ("Matplotlib not found")
return
# plot
for i in fmg:
for j in fmg[i]:
dotY = [-i[0], -j[0]]
dotX = [i[1], j[1]]
plt.plot(dotX, dotY, "o:")
if (i[0]-mazeLong)**2+i[1]**2 > (j[0]-mazeLong)**2+j[1]**2:
plt.annotate (str(j)+'<-'+str(i)+' '+str(fmg[i][j][0])+' '+str(fmg[i][j][1]), ( (i[1]+j[1])/2.0 - 0.4, -((i[0]+j[0])/2.0 -0.1) ))
else:
plt.annotate (str(i)+'->'+str(j)+' '+str(fmg[i][j][0])+' '+str(fmg[i][j][1]), ( (i[1]+j[1])/2.0 - 0.4, -((i[0]+j[0])/2.0 +0.1) ))
# render
plt.axis((-0.5,mazeLong-0.5, -mazeLong+0.5, 0.5))
plt.show()
示例6: plot_results
def plot_results(algo, datas, xlabel, ylabel, note, factor=None):
plt.clf()
fig1, ax1 = plt.subplots()
plt.figtext(0.90, 0.94, "Note: " + note, va='top', ha='right')
w, h = fig1.get_size_inches()
fig1.set_size_inches(w*1.5, h)
ax1.set_xscale('log')
ax1.get_xaxis().set_major_formatter(ticker.ScalarFormatter())
ax1.get_xaxis().set_minor_locator(ticker.NullLocator())
ax1.set_xticks(datas[0][:,0])
ax1.grid(color="lightgrey", linestyle="--", linewidth=1, alpha=0.5)
if factor:
ax1.set_xticklabels([str(int(x)) for x in datas[0][:,0]/factor])
plt.xlabel(xlabel, fontsize=16)
plt.ylabel(ylabel, fontsize=16)
plt.xlim(datas[0][0,0]*.9, datas[0][-1,0]*1.1)
plt.suptitle("%s Performance" % (algo), fontsize=28)
for backend, data in zip(backends, datas):
N = data[:, 0]
plt.plot(N, data[:, 1], 'o-', linewidth=2, markersize=5, label=backend)
dy = max(data[:,1]) / 20.0
for x, y in zip(N, data[:, 1]):
plt.annotate('%.1f' % y, (x, y+dy))
plt.legend(loc='upper left', fontsize=18)
plt.savefig(algo + '.png')
示例7: plot_confusion_matrix
def plot_confusion_matrix(self, y_test, y_pred, list_classes):
cm = self.confusion_matrix(y_test, y_pred)
plt.figure()
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('Confusion matrix')
plt.colorbar()
tick_marks = np.arange(len(list_classes))
plt.xticks(tick_marks, list_classes, rotation=90)
plt.yticks(tick_marks, list_classes)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.grid(True)
width, height = len(list_classes), len(list_classes)
for x in range(width):
for y in range(height):
if cm[x][y] > 100:
color = 'white'
else:
color = 'black'
if cm[x][y] > 0:
plt.annotate(str(cm[x][y]), xy=(y, x),
horizontalalignment='center',
verticalalignment='center',
color=color)
plt.show()
示例8: plot_confusion_matrix
def plot_confusion_matrix(self, y_true, y_pred, list_classes, title='Confusion matrix', filename='confusion_matrix.png'):
# compute confusion matrix
cm = confusion_matrix(y_true,y_pred)
conf_mat_norm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
conf_mat2 = np.around(conf_mat_norm,decimals=2) # rounding to display in figure
fig = plt.figure(figsize=(16,16), dpi=100)
plt.imshow(conf_mat2,interpolation='nearest')
for x in xrange(len(list_classes)):
for y in xrange(len(list_classes)):
plt.annotate(str(conf_mat2[x][y]),xy=(y,x),ha='center',va='center')
plt.xticks(range(len(list_classes)),list_classes,rotation=90,fontsize=11)
plt.yticks(range(len(list_classes)),list_classes,fontsize=11)
plt.tight_layout(pad=3.)
plt.title(title)
plt.colorbar()
# plt.show()
fig.savefig(filename)
示例9: make_xi_plot
def make_xi_plot():
from numpy import linspace
from matplotlib import pyplot as pl
pl.rc('text', usetex=True)
pl.rc('font', family='serif')
lamdas = [-1,-0.9,-0.7,0,0.7,0.9,1]
for lam in lamdas:
plotx(lam,0,linestyle='k',minval=-0.9,maxval=10.0,logplot=True)
plotx(lam,1,linestyle='k--',logplot=True)
plotx(lam,2,logplot=True)
plotx(lam,3,linestyle='k--',logplot=True)
pl.vlines(x=1,ymin=-2,ymax=-0.076,color='k')
pl.xlabel(r'$$\xi$$',fontsize=16)
pl.ylabel(r'$$\tau$$',fontsize=16)
pl.text(0.0, 0, r'$$M=0$$', bbox=dict(facecolor='white', alpha=1))
pl.text(0.0, 1.4, r'$$M=1$$', bbox=dict(facecolor='white', alpha=1))
pl.text(0, 2.48, r'$$M=2$$', bbox=dict(facecolor='white', alpha=1))
pl.text(1.3, -1.5, r'hyperbolic')
pl.text(0.3, -1.5, r'elliptic')
pl.annotate(r'$$\lambda = 1$$', xy=(-0.29, -0.19), xytext=(-1, -1),
arrowprops=dict(facecolor='black', shrink=0.15, width=1,headwidth=5),
)
pl.annotate(r'$$\lambda = -1$$', xy=(0.7, 0.4), xytext=(0.8,0.8),
arrowprops=dict(facecolor='black', shrink=0.15, width=1,headwidth=5),
)
pl.xlim((-2,2))
pl.ylim((-2,3))
示例10: make_starter_plot
def make_starter_plot():
from numpy import linspace
from math import pi
from matplotlib import pyplot as pl
pl.rc('text', usetex=True)
pl.rc('font', family='serif')
pl.axvline(x=1,color='k')
pl.xlabel(r'$$x$$',fontsize=16)
pl.ylabel(r'$$T$$',fontsize=16)
pl.text(0.5, 4, r'hyperbolic')
pl.text(1.2, 4, r'elliptic')
plot_x_curves([-1,-0.85,0.85,1],N=0,logplot=False,maxval=10,minval=-0.9)
T0s = [pi,pi/2,1.1]
for T0 in T0s:
T =linspace(T0,10*pi)
pl.plot((T0/T)**(2.0/3.0)-1.0,T,':k')
T =linspace(0.1,T0)
pl.plot((T0/T)**(1.0)-1.0,T,':k')
pl.plot([],'k-',label="tof curves [-1,-0.85,0.85,1]")
pl.plot([],'k:',label="initial guesses")
pl.legend()
pl.annotate(r'$$\lambda \le -0.85$$', xy=(-0.4, 7.5), xytext=(-0.1, 8),
arrowprops=dict(facecolor='black', shrink=0.15, width=1,headwidth=5),
)
pl.annotate(r'$$\lambda \ge 0.85$$', xy=(-0.33, 2.1), xytext=(-0.9, 1.09),
arrowprops=dict(facecolor='black', shrink=0.15, width=1,headwidth=5),
)
示例11: make_x_plot
def make_x_plot():
from numpy import linspace
from matplotlib import pyplot as pl
pl.rc('text', usetex=True)
pl.rc('font', family='serif')
lamdas = [-1,-0.9,-0.7,0,0.7,0.9,1]
for lam in lamdas:
plotx(lam,0)
plotx(lam,1,linestyle='k--')
plotx(lam,2)
plotx(lam,3,linestyle='k--')
pl.axvline(x=1,color='k')
pl.xlabel(r'$$x$$',fontsize=16)
pl.ylabel(r'$$T$$',fontsize=16)
pl.text(0.0, 1.5, r'$$M=0$$', bbox=dict(facecolor='white', alpha=1))
pl.text(0.0, 4.7, r'$$M=1$$', bbox=dict(facecolor='white', alpha=1))
pl.text(0.0, 8.0, r'$$M=2$$', bbox=dict(facecolor='white', alpha=1))
pl.text(0.5, 4, r'hyperbolic')
pl.text(1.2, 4, r'elliptic')
pl.annotate(r'$$\lambda = 1$$', xy=(-0.25, 1.1), xytext=(-0.8, 0.2),
arrowprops=dict(facecolor='black', shrink=0.15, width=1,headwidth=5),
)
pl.annotate(r'$$\lambda = -1$$', xy=(0.5, 2.0), xytext=(0.7, 3.0),
arrowprops=dict(facecolor='black', shrink=0.15, width=1,headwidth=5),
)
示例12: analyzeSound
def analyzeSound(self):
""" highlights N first peaks in frequency diagram
"""
# on recharge les données
data = self.data
sample_freq = self.sample_freq
from scipy.fftpack import fftfreq
freq_vect = fftfreq(data.size) * sample_freq
# on trouve les maxima
y0 = abs(fft(data))
# y1 = abs(fft(data[:, 1]))
maxi0 = ((diff(sign(diff(y0))) < 0) & (y0[1:-1] > y0.max()/10.)).nonzero()[0] + 1 # local max
# maxi1 = ((diff(sign(diff(y1))) < 0) & (y1[1:-1] > y1.max()/10.)).nonzero()[0] + 1 # local max
# fréquence
ax = self.main_figure.figure.add_subplot(212)
ax.plot(freq_vect[maxi0], y0[maxi0], "o")
# ax.plot(freq_vect[maxi1], y1[maxi1], "o")
# annotations au dessus d'une fréquence de coupure
fc = 100
for point in maxi0[(freq_vect[maxi0] > fc).nonzero()][:self.ui.spinBox.value()]:
plt.annotate("%.2f" % freq_vect[point], (freq_vect[point], y0[point]))
# for point in maxi1[(freq_vect[maxi0] > fc).nonzero()][:self.ui.spinBox.value()]:
# plt.annotate("%.2f" % freq_vect[point], (freq_vect[point], y1[point]))
self.ui.main_figure.canvas.draw()
示例13: euclSpaceMapp
def euclSpaceMapp(gDirected,distMat,top100List,top100ListIdxs):
print('extract euclidean space mapping')
allCoordinates = euclideanCoords(gDirected,distMat)
print('Mapped nodes to euclidean space')
xpl=[x[0] for x in allCoordinates]
minXpl = min(xpl)
if minXpl < 0:
aminXpl = abs(minXpl)
xpl = np.array([x+aminXpl+1 for x in xpl])
ypl=[x[1] for x in allCoordinates]
minYpl = min(ypl)
if minYpl < 0:
aminYpl = abs(minYpl)
ypl = np.array([y+aminYpl+1 for y in ypl])
fig = pyplot.figure()
ax = pyplot.gca()
ax.scatter(xpl,ypl)
ax.set_ylim(min(ypl)-1,max(ypl)+1)
ax.set_xlim(min(xpl)-1,max(xpl)+1)
labels = top100List
for label, x, y in zip(labels, xpl[top100ListIdxs], ypl[top100ListIdxs]):
pyplot.annotate(label, xy = (x, y), xytext = (-10, 10),textcoords = 'offset points', ha = 'right', va = 'bottom',
bbox = dict(boxstyle = 'round,pad=0.2', fc = 'yellow', alpha = 0.5),
arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'))
interactive(True)
pyplot.show()
# pyplot.savefig('./images/'+str(year)+'_euclSpaceMapping_via_shortestPaths.jpg', bbox_inches='tight', format='jpg')
pyplot.savefig('./images/'+str(year)+'_euclSpaceMapping_via_distMatrix.jpg', bbox_inches='tight', format='jpg')
pyplot.close()
示例14: plot_Features
def plot_Features(sort_p_lower,sort_p_upper,X,y,vectorizer,n=5):
for i in range(n):
feature_Ind = sort_p_lower[i][2]
ind_pos = np.nonzero(y)
ind_neg = np.nonzero(y==0)
sum_pos = np.sum(X[ind_pos,feature_Ind].toarray())
sum_neg = np.sum(X[ind_neg,feature_Ind].toarray())
a = plt.scatter(sum_pos,sum_neg,c='blue')
plt.annotate(vectorizer.get_feature_names()[feature_Ind],(sum_pos,sum_neg))
plt.xlabel("number of times in positive instances")
plt.ylabel("number of times in negative instances")
plt.title("top features for news coverage prediction")
for i in range(n):
feature_Ind = sort_p_upper[i][2]
ind_pos = np.nonzero(y)
ind_neg = np.nonzero(y==0)
sum_pos = np.sum(X[ind_pos,feature_Ind].toarray())
sum_neg = np.sum(X[ind_neg,feature_Ind].toarray())
b = plt.scatter(sum_pos,sum_neg,c='red')
plt.annotate(vectorizer.get_feature_names()[feature_Ind],(sum_pos,sum_neg))
xmin,xmax = plt.xlim()
ymin,ymax = plt.ylim()
min_value = min([xmax,ymax])
plt.xlim(0, xmax)
plt.ylim(0, ymax)
plt.plot(range(int(min_value)),range(int(min_value)),0.01,'-')
plt.legend((a,b),('positive feature','negative feature'),scatterpoints=1,loc=4)
#plt.show()
plt.savefig("BS_NConPR/top_features_NC")
开发者ID:yezhang1989,项目名称:A-Data-Driven-Approach-to-Characterizing-the-Perceived-Newsworthiness-of-Health-ScienceArticles,代码行数:30,代码来源:BS_NConPR.py
示例15: Main
def Main():
args=ParseArg()
data=np.loadtxt(args.input,delimiter='\t',dtype=float)
min_x=int(args.xlim[0])
max_x=int(args.xlim[1])
start=int(data[0,0])
peak=data[:,1].argmax()
plt.ioff()
plt.plot(np.array(range(min_x,max_x)),data[(min_x-start):(max_x-start),1],color='r',label="real_count")
if args.distogram:
plt.annotate('local max: '+str(peak+start)+"bp",xy=(peak+start,data[peak,1]),xytext=(peak+start+30,0.8*data[peak,1]),)
# arrowprops=dict(facecolor='black', shrink=0.05))
# smoth the plot
xnew=np.linspace(min_x,max_x,(max_x-min_x)/5)
smooth=spline(np.array(range(min_x,max_x)),data[(min_x-start):(max_x-start),1],xnew)
plt.plot(xnew,smooth,color='g',label='smooth(5bp)')
max_y=max(data[(min_x-start):(max_x-start),1])
min_y=min(data[(min_x-start):(max_x-start),1])
plt.xlabel("Distance")
plt.ylabel("Counts")
plt.xlim(min_x,max_x)
plt.ylim(min_y*0.9,max_y*1.1)
plt.title(os.path.basename(args.input).split("_"+str(start))[0])
plt.legend()
plt.savefig(os.path.basename(args.input).split("_"+str(start))[0]+"_%d~%dbp."%(min_x,max_x)+args.output)
print >>sys.stderr,"output figure file generated!!"