当前位置: 首页>>代码示例>>Python>>正文


Python pylab.ylabel函数代码示例

本文整理汇总了Python中matplotlib.pylab.ylabel函数的典型用法代码示例。如果您正苦于以下问题:Python ylabel函数的具体用法?Python ylabel怎么用?Python ylabel使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了ylabel函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: check_models

    def check_models(self):
        plt.figure('Bandgap narrowing')
        Na = np.logspace(12, 20)
        Nd = 0.
        dn = 1e14
        temp = 300.

        for author in self.available_models():
            BGN = self.update(Na=Na, Nd=Nd, nxc=dn,
                              author=author,
                              temp=temp)

            if not np.all(BGN == 0):
                plt.plot(Na, BGN, label=author)

        test_file = os.path.join(
            os.path.dirname(os.path.realpath(__file__)),
            'Si', 'check data', 'Bgn.csv')

        data = np.genfromtxt(test_file, delimiter=',', names=True)

        for name in data.dtype.names[1:]:
            plt.plot(
                data['N'], data[name], 'r--',
                label='PV-lighthouse\'s: ' + name)

        plt.semilogx()
        plt.xlabel('Doping (cm$^{-3}$)')
        plt.ylabel('Bandgap narrowing (K)')

        plt.legend(loc=0)
开发者ID:MK8J,项目名称:QSSPL-analyser,代码行数:31,代码来源:bandgap_narrowing.py

示例2: make_corr1d_fig

def make_corr1d_fig(dosave=False):
    corr = make_corr_both_hemi()
    lw=2; fs=16
    pl.figure(1)#, figsize=(8, 7))
    pl.clf()
    pl.xlim(4,300)
    pl.ylim(-400,+500)    
    lambda_titles = [r'$20 < \lambda < 30$',
                     r'$30 < \lambda < 40$',
                     r'$\lambda > 40$']
    colors = ['blue','green','red']
    for i in range(3):
        corr1d, rcen = corr_1d_from_2d(corr[i])
        ipdb.set_trace()
        pl.semilogx(rcen, corr1d*rcen**2, lw=lw, color=colors[i])
        #pl.semilogx(rcen, corr1d*rcen**2, 'o', lw=lw, color=colors[i])
    pl.xlabel(r'$s (Mpc)$',fontsize=fs)
    pl.ylabel(r'$s^2 \xi_0(s)$', fontsize=fs)    
    pl.legend(lambda_titles, 'lower left', fontsize=fs+3)
    pl.plot([.1,10000],[0,0],'k--')
    s_bao = 149.28
    pl.plot([s_bao, s_bao],[-9e9,+9e9],'k--')
    pl.text(s_bao*1.03, 420, 'BAO scale')
    pl.text(s_bao*1.03, 370, '%0.1f Mpc'%s_bao)
    if dosave: pl.savefig('xi1d_3bin.pdf')
开发者ID:amanzotti,项目名称:vksz,代码行数:25,代码来源:vksz.py

示例3: plot_bernoulli_matrix

 def plot_bernoulli_matrix(self, show_npfs=False):
   """
   Plot the heatmap of the Bernoulli matrix 
   @self
   @show_npfs - Highlight NPFS detections [Boolean] 
   """
   matrix = self.Bernoulli_matrix
   if show_npfs == False:
     plot = plt.imshow(matrix)
     plot.set_cmap('hot')
     plt.colorbar()
     plt.xlabel("Bootstraps")
     plt.ylabel("Feature")
     plt.show()
   else:
     for i in self.selected_features:
       for k in range(len(matrix[i])):
         matrix[i,k] = .5
     plot = plt.imshow(matrix)
     plot.set_cmap('hot')
     plt.xlabel("Bootstraps")
     plt.ylabel("Feature")
     plt.colorbar()
     plt.show()
   return None
开发者ID:gditzler,项目名称:py-npfs,代码行数:25,代码来源:npfs.py

示例4: bar

    def bar(self, key_word_sep = " ", title=None, **kwargs):
        """Generates a pylab bar plot from the result set.

        ``matplotlib`` must be installed, and in an
        IPython Notebook, inlining must be on::

            %%matplotlib inline

        The last quantitative column is taken as the Y values;
        all other columns are combined to label the X axis.

        Parameters
        ----------
        title: Plot title, defaults to names of Y value columns
        key_word_sep: string used to separate column values
                      from each other in labels

        Any additional keyword arguments will be passsed
        through to ``matplotlib.pylab.bar``.
        """
        import matplotlib.pylab as plt
        self.guess_pie_columns(xlabel_sep=key_word_sep)
        plot = plt.bar(range(len(self.ys[0])), self.ys[0], **kwargs)
        if self.xlabels:
            plt.xticks(range(len(self.xlabels)), self.xlabels,
                       rotation=45)
        plt.xlabel(self.xlabel)
        plt.ylabel(self.ys[0].name)
        return plot
开发者ID:RedBrainLabs,项目名称:ipython-sql,代码行数:29,代码来源:run.py

示例5: study_multiband_planck

def study_multiband_planck(quick=True):
    savename = datadir+'cl_multiband.pkl'
    bands = [100, 143, 217, 'mb']
    if quick: cl = pickle.load(open(savename,'r'))
    else:
        cl = {}
        mask = load_planck_mask()
        mask_factor = np.mean(mask**2.)
        for band in bands:
            this_map = load_planck_data(band)
            this_cl = hp.anafast(this_map*mask, lmax=lmax)/mask_factor
            cl[band] = this_cl
        pickle.dump(cl, open(savename,'w'))


    cl_theory = {}
    pl.clf()
    
    for band in bands:
        l_theory, cl_theory[band] = get_cl_theory(band)
        this_cl = cl[band]
        pl.plot(this_cl/cl_theory[band])
        
    pl.legend(bands)
    pl.plot([0,4000],[1,1],'k--')
    pl.ylim(.7,1.3)
    pl.ylabel('data/theory')
开发者ID:amanzotti,项目名称:vksz,代码行数:27,代码来源:vksz.py

示例6: plot_values

 def plot_values(self, TITLE, SAVE):
     plot(self.list_of_densities, self.list_of_pressures)
     title(TITLE)
     xlabel("Densities")
     ylabel("Pressure")
     savefig(SAVE)
     show()
开发者ID:Schoyen,项目名称:molecular-dynamics-fys3150,代码行数:7,代码来源:PlotPressureNumber.py

示例7: check_models

    def check_models(self):
        '''
        Displays a plot of the models against that taken from a
        respected website (https://www.pvlighthouse.com.au/)
        '''
        plt.figure('Intrinsic bandgap')
        t = np.linspace(1, 500)

        for author in self.available_models():

            Eg = self.update(temp=t, author=author, multiplier=1.0)
            plt.plot(t, Eg, label=author)

        test_file = os.path.join(
            os.path.dirname(os.path.realpath(__file__)),
            'Si', 'check data', 'iBg.csv')

        data = np.genfromtxt(test_file, delimiter=',', names=True)

        for temp, name in zip(data.dtype.names[0::2], data.dtype.names[1::2]):
            plt.plot(
                data[temp], data[name], '--', label=name)

        plt.xlabel('Temperature (K)')
        plt.ylabel('Intrinsic Bandgap (eV)')

        plt.legend(loc=0)
        self.update(temp=0, author=author, multiplier=1.01)
开发者ID:robertdumbrell,项目名称:semiconductor,代码行数:28,代码来源:bandgap_intrinsic.py

示例8: fdr

def fdr(p_values=None, verbose=0):
    """Returns the FDR associated with each p value

    Parameters
    -----------
    p_values : ndarray of shape (n)
        The samples p-value

    Returns
    -------
    q : array of shape(n)
        The corresponding fdr values
    """
    p_values = check_p_values(p_values)
    n_samples = p_values.size
    order = p_values.argsort()
    sp_values = p_values[order]

    # compute q while in ascending order
    q = np.minimum(1, n_samples * sp_values / np.arange(1, n_samples + 1))
    for i in range(n_samples - 1, 0, - 1):
        q[i - 1] = min(q[i], q[i - 1])

    # reorder the results
    inverse_order = np.arange(n_samples)
    inverse_order[order] = np.arange(n_samples)
    q = q[inverse_order]

    if verbose:
        import matplotlib.pylab as mp
        mp.figure()
        mp.xlabel('Input p-value')
        mp.plot(p_values, q, '.')
        mp.ylabel('Associated fdr')
    return q
开发者ID:Naereen,项目名称:nipy,代码行数:35,代码来源:empirical_pvalue.py

示例9: plot_corner_posteriors

    def plot_corner_posteriors(self, savefile=None, labels=["T1", "R1", "Av", "T2", "R2"]):
        '''
        Plots the corner plot of the MCMC results.
        '''
        ndim = len(self.sampler.flatchain[0,:])
        chain = self.sampler
        samples = chain.flatchain
        
        samples = samples[:,0:ndim]  
        plt.figure(figsize=(8,8))
        fig = corner.corner(samples, labels=labels[0:ndim])
        plt.title("MJD: %.2f"%self.mjd)
        name = self._get_save_path(savefile, "mcmc_posteriors")
        plt.savefig(name)
        plt.close("all")
        

        plt.figure(figsize=(8,ndim*3))
        for n in range(ndim):
            plt.subplot(ndim,1,n+1)
            chain = self.sampler.chain[:,:,n]
            nwalk, nit = chain.shape
            
            for i in np.arange(nwalk):
                plt.plot(chain[i], lw=0.1)
                plt.ylabel(labels[n])
                plt.xlabel("Iteration")
        name_walkers = self._get_save_path(savefile, "mcmc_walkers")
        plt.tight_layout()
        plt.savefig(name_walkers)
        plt.close("all")  
开发者ID:nblago,项目名称:utils,代码行数:31,代码来源:BBFit.py

示例10: plot_q

def plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):
    """
    Plot a radiallysymmetric Q model.

    plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):

    r_min=minimum radius [km], r_max=maximum radius [km], dr=radius
    increment [km]

    Currently available models (model): cem, prem, ql6
    """
    import matplotlib.pylab as plt

    r = np.arange(r_min, r_max + dr, dr)
    q = np.zeros(len(r))

    for k in range(len(r)):

        if model == 'cem':
            q[k] = q_cem(r[k])
        elif model == 'ql6':
            q[k] = q_ql6(r[k])
        elif model == 'prem':
            q[k] = q_prem(r[k])

    plt.plot(r, q, 'k')
    plt.xlim((0.0, r_max))
    plt.xlabel('radius [km]')
    plt.ylabel('Q')
    plt.show()
开发者ID:krischer,项目名称:ses3d_ctrl,代码行数:30,代码来源:Q_models.py

示例11: handle

    def handle(self, *args, **options):
        try:
            from matplotlib import pylab as pl
            import numpy as np
        except ImportError:
            raise Exception('Be sure to install requirements_scipy.txt before running this.')

        all_names_and_counts = RawCommitteeTransactions.objects.all().values('attest_by_name').annotate(total=Count('attest_by_name')).order_by('-total')
        all_names_and_counts_as_tuple_and_sorted = sorted([(row['attest_by_name'], row['total']) for row in all_names_and_counts], key=lambda row: row[1])
        print "top ten attestors:  (name, number of transactions they attest for)"
        for row in all_names_and_counts_as_tuple_and_sorted[-10:]:
            print row

        n_bins = 100
        filename = 'attestor_participation_distribution.png'

        x_max = all_names_and_counts_as_tuple_and_sorted[-31][1]  # eliminate top outliers from hist
        x_min = all_names_and_counts_as_tuple_and_sorted[0][1]

        counts = [row['total'] for row in all_names_and_counts]
        pl.figure(1, figsize=(18, 6))
        pl.hist(counts, bins=np.arange(x_min, x_max, (float(x_max)-x_min)/100) )
        pl.title('Histogram of Attestor Participation in RawCommitteeTransactions')
        pl.xlabel('Number of transactions a person attested for')
        pl.ylabel('Number of people')
        pl.savefig(filename)
开发者ID:avaleske,项目名称:hackor,代码行数:26,代码来源:graph_dist_of_attestor_contribution_in_CommTrans.py

示例12: flipPlot

def flipPlot(minExp, maxExp):
    """假定minEXPy和maxExp是正整数且minExp<maxExp
    绘制出2**minExp到2**maxExp次抛硬币的结果
    """
    ratios = []
    diffs = []
    aAxis = []
    for i in range(minExp, maxExp+1):
        aAxis.append(2**i)
    for numFlips in aAxis:
        numHeads = 0
        for n in range(numFlips):
            if random.random() < 0.5:
                numHeads += 1
        numTails = numFlips - numHeads
        ratios.append(numHeads/numFlips)
        diffs.append(abs(numHeads-numTails))
    plt.figure()
    ax1 = plt.subplot(121)
    plt.title("Difference Between Heads and Tails")
    plt.xlabel('Number of Flips')
    plt.ylabel('Abs(#Heads - #Tails)')
    ax1.semilogx(aAxis, diffs, 'bo')
    ax2 = plt.subplot(122)
    plt.title("Heads/Tails Ratios")
    plt.xlabel('Number of Flips')
    plt.ylabel("#Heads/#Tails")
    ax2.semilogx(aAxis, ratios, 'bo')
    plt.show()
开发者ID:xiaohu2015,项目名称:ProgrammingPython_notes,代码行数:29,代码来源:chapter12.py

示例13: plot_runtime_results

def plot_runtime_results(results):
    plt.rcParams["figure.figsize"] = 7,7
    plt.rcParams["font.size"] = 22
    matplotlib.rc("xtick", labelsize=24)
    matplotlib.rc("ytick", labelsize=24)

    params = {"text.fontsize" : 32,
              "font.size" : 32,
              "legend.fontsize" : 30,
              "axes.labelsize" : 32,
              "text.usetex" : False
              }
    plt.rcParams.update(params)
    
    #plt.semilogx(results[:,0], results[:,3], 'r-x', lw=3)
    #plt.semilogx(results[:,0], results[:,1], 'g-D', lw=3)
    #plt.semilogx(results[:,0], results[:,2], 'b-s', lw=3)

    plt.plot(results[:,0], results[:,3], 'r-x', lw=3, ms=10)
    plt.plot(results[:,0], results[:,1], 'g-D', lw=3, ms=10)
    plt.plot(results[:,0], results[:,2], 'b-s', lw=3, ms=10)

    plt.legend(["Chain", "Tree", "FFT Tree"], loc="upper left")
    plt.xticks([1e5, 2e5, 3e5])
    plt.yticks([0, 60, 120, 180])

    plt.xlabel("Problem Size")
    plt.ylabel("Runtime (sec)")
    return results
开发者ID:kswersky,项目名称:CaRBM,代码行数:29,代码来源:sum_cardinality.py

示例14: plotMassFunction

def plotMassFunction(im, pm, outbase, mmin=9, mmax=13, mstep=0.05):
    """
    Make a comparison plot between the input mass function and the 
    predicted projected correlation function
    """
    plt.clf()

    nmbins = ( mmax - mmin ) / mstep
    mbins = np.logspace( mmin, mmax, nmbins )
    mcen = ( mbins[:-1] + mbins[1:] ) /2
    
    plt.xscale( 'log', nonposx = 'clip' )
    plt.yscale( 'log', nonposy = 'clip' )
    
    ic, e, p = plt.hist( im, mbins, label='Original Halos', alpha=0.5, normed = True)
    pc, e, p = plt.hist( pm, mbins, label='Added Halos', alpha=0.5, normed = True)
    
    plt.legend()
    plt.xlabel( r'$M_{vir}$' )
    plt.ylabel( r'$\frac{dN}{dM}$' )
    #plt.tight_layout()
    plt.savefig( outbase+'_mfcn.png' )
    
    mdtype = np.dtype( [ ('mcen', float), ('imcounts', float), ('pmcounts', float) ] )
    mf = np.ndarray( len(mcen), dtype = mdtype )
    mf[ 'mcen' ] = mcen
    mf[ 'imcounts' ] = ic
    mf[ 'pmcounts' ] = pc

    fitsio.write( outbase+'_mfcn.fit', mf )
开发者ID:j-dr,项目名称:ADDHALOS,代码行数:30,代码来源:validation.py

示例15: inter_show

def inter_show(start, lc, eta, vol_ins, props, lbl_outs, grdts, pars):
    '''
    Plots a display of training information to the screen
    '''
    import matplotlib.pylab as plt
    name_in, vol  = vol_ins.popitem()
    name_p,  prop = props.popitem()
    name_l,  lbl  = lbl_outs.popitem()
    name_g,  grdt = grdts.popitem()

    m_input = volume_util.crop(vol[0,:,:,:], prop.shape[-3:]) #good enough for now

    # real time visualization
    plt.subplot(251),   plt.imshow(vol[0,0,:,:],    interpolation='nearest', cmap='gray')
    plt.xlabel('input')
    plt.subplot(252),   plt.imshow(m_input[0,:,:],    interpolation='nearest', cmap='gray')
    plt.xlabel('matched input')
    plt.subplot(253),   plt.imshow(prop[0,0,:,:],   interpolation='nearest', cmap='gray')
    plt.xlabel('output')
    plt.subplot(254),   plt.imshow(lbl[0,0,:,:],    interpolation='nearest', cmap='gray')
    plt.xlabel('label')
    plt.subplot(255),   plt.imshow(grdt[0,0,:,:],   interpolation='nearest', cmap='gray')
    plt.xlabel('gradient')

    plt.subplot(256)
    plt.plot(lc.tn_it, lc.tn_err, 'b', label='train')
    plt.plot(lc.tt_it, lc.tt_err, 'r', label='test')
    plt.xlabel('iteration'), plt.ylabel('cost energy')
    plt.subplot(257)
    plt.plot( lc.tn_it, lc.tn_cls, 'b', lc.tt_it, lc.tt_cls, 'r')
    plt.xlabel('iteration'), plt.ylabel( 'classification error' )
    return
开发者ID:muqiao0626,项目名称:znn-release,代码行数:32,代码来源:zshow.py


注:本文中的matplotlib.pylab.ylabel函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。