本文整理汇总了Python中matplotlib.pylab.xscale函数的典型用法代码示例。如果您正苦于以下问题:Python xscale函数的具体用法?Python xscale怎么用?Python xscale使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了xscale函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: nova_plot
def nova_plot():
erg2mev=624151.
fig=plot.figure()
yrange = [1e-6,2e-4]
xrange = [1e-1,1e5]
plot.fill_between([0.2,10e3],[yrange[1],yrange[1]],[yrange[0],yrange[0]],facecolor='yellow',interpolate=True,color='yellow',alpha=0.5)
plot.annotate('AMEGO',xy=(3,9e-5),xycoords='data',fontsize=26,color='black')
lat=ascii.read("data/NMon2012.LAT.dat",names=['energy','en_low','en_high','flux','flux_err','tmp'])
plot.scatter(lat['energy'],lat['flux']*erg2mev,color='red')
plot.errorbar(lat['energy'],lat['flux']*erg2mev,xerr=[lat['en_low'],lat['en_high']],yerr=lat['flux_err']*erg2mev,ecolor='red',capsize=0,fmt='none')
latul=ascii.read("data/NMon2012.LAT.limits.dat",names=['energy','en_low','en_high','flux','tmp1','tmp2','tmp3','tmp4'])
plot.errorbar(latul['energy'],latul['flux']*erg2mev,xerr=[latul['en_low'],latul['en_high']],yerr=0.5*latul['flux']*erg2mev,uplims=True,ecolor='red',capsize=0,fmt='none')
plot.scatter(latul['energy'],latul['flux']*erg2mev,color='red')
leptonic=ascii.read("data/sp-NMon12-IC-best-fit-1MeV-30GeV.txt",names=['energy','flux'],data_start=1)
hadronic=ascii.read("data/sp-NMon12-pi0-and-secondaries.txt",names=['energy','flux1','flux2'],data_start=1)
plot.plot(leptonic['energy'],leptonic['flux']*erg2mev,'r--',color='black',lw=2,label='Leptonic')
plot.plot(hadronic['energy'],hadronic['flux2']*erg2mev,color='black',lw=2,label='Hadronic+Secondary Leptons')
plot.legend(loc='upper right',fontsize='small',frameon=False,framealpha=0.5)
plot.xscale('log')
plot.yscale('log')
plot.ylim(yrange)
plot.xlim(xrange)
plot.xlabel(r'Energy (MeV)')
plot.ylabel(r'Energy$^2 \times $ Flux (Energy) (erg cm$^{-2}$ s$^{-1}$)')
plot.title('Nova V339 Del 2013')
plot.savefig('Nova_SED.png', bbox_inches='tight')
plot.savefig('Nova_SED.eps', bbox_inches='tight')
plot.show()
plot.close()
示例2: plot_degreeRate
def plot_degreeRate(db, keynames, save_path):
degRate_x_name = 'degRateDistr_x'
degRate_y_name = 'degRateDistr_y'
plt.clf()
plt.figure(figsize = (8, 5))
plt.subplot(1, 2, 1)
plt.plot(db[keynames['mog']][degRate_x_name], db[keynames['mog']][degRate_y_name], 'b-', lw=5, label = 'fairyland')
plt.plot(db[keynames['mblg']][degRate_x_name], db[keynames['mblg']][degRate_y_name], 'r:', lw=5, label = 'twitter')
plt.plot(db[keynames['im']][degRate_x_name], db[keynames['im']][degRate_y_name], 'k--', lw=5, label = 'yahoo')
plt.xscale('log')
plt.grid(True)
plt.title('interaction')
plt.legend(('fairyland', 'twitter', 'yahoo'), loc = 4, prop = {'size': 10})
plt.xlabel('In-degree to Out-degree Ratio')
plt.ylabel('CDF')
plt.subplot(1, 2, 2)
plt.plot(db[keynames['mogF']][degRate_x_name], db[keynames['mogF']][degRate_y_name], 'b-', lw=5, label = 'fairyland')
plt.plot(db[keynames['mblgF']][degRate_x_name], db[keynames['mblgF']][degRate_y_name], 'r:', lw=5, label = 'twitter')
#plt.plot(db[keynames['imF']][degRate_x_name], db[keynames['imF']][degRate_y_name], 'k--', lw=5, label = 'yahoo')
plt.xscale('log')
plt.grid(True)
plt.title('ally')
plt.xlabel('In-degree to Out-degree Ratio')
plt.ylabel('CDF')
plt.savefig(os.path.join(save_dir, save_path))
示例3: test_power_spectra
def test_power_spectra(r0, N, delta, L0, l0):
N*= 10
phase_screen = atmosphere.ft_phase_screen(r0, N, delta, L0, l0)
phase_screen = phase_screen[:N/10, :N/10]
power_spec_2d = numpy.fft.fft2(phase_screen, s=(N*2, N*2))
plt.figure()
plt.imshow(numpy.abs(numpy.fft.fftshift(power_spec_2d)), interpolation='nearest')
power_spec = circle.aziAvg(numpy.abs(numpy.fft.fftshift(power_spec_2d)))
power_spec /= power_spec.sum()
freqs = numpy.fft.fftfreq(power_spec_2d.shape[0], delta)
# Theoretical Model of Power Spectrum
print freqs
plt.figure()
plt.plot(freqs[:freqs.size/2], power_spec)
plt.xscale('log')
plt.yscale('log')
plt.show()
return None
示例4: plotFeaturePDF
def plotFeaturePDF(ift, pft, outbase, fmin=0.0, fmax=1.0, fstep=0.01):
"""
Plot a comparison between the input feature distribution and the
feature distribution of the predicted halos
"""
plt.clf()
nfbins = ( fmax - fmin ) / fstep
fbins = np.logspace( fmin, fmax, nfbins )
fcen = ( fbins[:-1] + fbins[1:] ) / 2
plt.xscale( 'log', nonposx='clip' )
plt.yscale( 'log', nonposy='clip' )
ic, e, p = plt.hist( ift, fbins, label='Original Halos', alpha=0.5, normed=True )
pc, e, p = plt.hist( pft, fbins, label='Added Halos', alpha=0.5, normed=True )
plt.legend()
plt.xlabel( r'$\delta$' )
plt.savefig( outbase+'_fpdf.png' )
fdtype = np.dtype( [ ('fcen', float), ('ifcounts', float), ('pfcounts', float) ] )
fd = np.ndarray( len(fcen), dtype = fdtype )
fd[ 'mcen' ] = fcen
fd[ 'imcounts' ] = ic
fd[ 'pmcounts' ] = pc
fitsio.write( outbase+'_fpdf.fit', fd )
示例5: wykres
def wykres(katalog):
import numpy as np
import os
import scipy.io.wavfile as siw
import json
import scipy.fftpack as sf
import matplotlib.pylab as plt
os.chdir(katalog)
song = open('song.txt', 'r')
songlist = list()
defs = json.load(open('defs.txt', 'r'))
beat = defs["bpm"]
nframes = 60/beat*44100
for songline in song:
track = open('track'+songline.strip('\n')+'.txt', 'r')
tracklist = list()
for trackline in track:
y = np.zeros([nframes, 2])
for i in range(len(trackline.split())):
y = y + siw.read('sample'+''.join(trackline.split()[i])+'.wav')[1][0:nframes]
y = np.mean(y,axis=1)
y /= 32767
tracklist = np.r_[tracklist, y]
songlist = np.r_[songlist, tracklist]
yf = sf.fft(songlist)
n = yf.size
xf = np.linspace(0, 44100/2, n/2)
plt.plot(xf, 2*(yf[1:int(n/2)+1])/n)
plt.xscale('log')
plt.show()
示例6: plotMassFunction
def plotMassFunction(im, pm, outbase, mmin=9, mmax=13, mstep=0.05):
"""
Make a comparison plot between the input mass function and the
predicted projected correlation function
"""
plt.clf()
nmbins = ( mmax - mmin ) / mstep
mbins = np.logspace( mmin, mmax, nmbins )
mcen = ( mbins[:-1] + mbins[1:] ) /2
plt.xscale( 'log', nonposx = 'clip' )
plt.yscale( 'log', nonposy = 'clip' )
ic, e, p = plt.hist( im, mbins, label='Original Halos', alpha=0.5, normed = True)
pc, e, p = plt.hist( pm, mbins, label='Added Halos', alpha=0.5, normed = True)
plt.legend()
plt.xlabel( r'$M_{vir}$' )
plt.ylabel( r'$\frac{dN}{dM}$' )
#plt.tight_layout()
plt.savefig( outbase+'_mfcn.png' )
mdtype = np.dtype( [ ('mcen', float), ('imcounts', float), ('pmcounts', float) ] )
mf = np.ndarray( len(mcen), dtype = mdtype )
mf[ 'mcen' ] = mcen
mf[ 'imcounts' ] = ic
mf[ 'pmcounts' ] = pc
fitsio.write( outbase+'_mfcn.fit', mf )
示例7: test_simple_gen
def test_simple_gen(self):
self_con = .8
other_con = 0.05
g = self.gen.gen_stoch_blockmodel(min_degree=1, blocks=5, self_con=self_con, other_con=other_con,
powerlaw_exp=2.1, degree_seq='powerlaw', num_nodes=1000, num_links=3000)
deg_hist = vertex_hist(g, 'total')
res = fit_powerlaw.Fit(g.degree_property_map('total').a, discrete=True)
print 'powerlaw alpha:', res.power_law.alpha
print 'powerlaw xmin:', res.power_law.xmin
if len(deg_hist[0]) != len(deg_hist[1]):
deg_hist[1] = deg_hist[1][:len(deg_hist[0])]
print 'plot degree dist'
plt.plot(deg_hist[1], deg_hist[0])
plt.xscale('log')
plt.xlabel('degree')
plt.ylabel('#nodes')
plt.yscale('log')
plt.savefig('deg_dist_test.png')
plt.close('all')
print 'plot graph'
pos = sfdp_layout(g, groups=g.vp['com'], mu=3)
graph_draw(g, pos=pos, output='graph.png', output_size=(800, 800),
vertex_size=prop_to_size(g.degree_property_map('total'), mi=2, ma=30), vertex_color=[0., 0., 0., 1.],
vertex_fill_color=g.vp['com'],
bg_color=[1., 1., 1., 1.])
plt.close('all')
print 'init:', self_con / (self_con + other_con), other_con / (self_con + other_con)
print 'real:', gt_tools.get_graph_com_connectivity(g, 'com')
示例8: plot_ccdf
def plot_ccdf(values, xscale, yscale):
pylab.yscale(yscale)
cdf = Cdf.MakeCdfFromList(values)
values, prob = cdf.Render()
pylab.xscale(xscale)
compProb = [1 - e for e in prob]
pylab.plot(values, compProb)
示例9: plot_scatter
def plot_scatter(times):
pl.scatter(times[:, 0], times[:, 1])
pl.xlabel('Time in seconds')
pl.ylabel('Ratio')
pl.title('Time in seconds versus the ratio')
pl.xlim(0, 300)
pl.xscale('log')
pl.show()
示例10: plot_times
def plot_times():
res = []
with open('times', 'r') as f:
for l in f.readlines():
x = eval(l)
res += [(x['samples'], x['auto'], x['tri'])]
res = list(zip(*res))
pl_auto = pl.plot(res[0], res[1])
pl_tri = pl.plot(res[0], res[2])
pl.xscale('log')
pl.ylabel("time (in seconds)")
pl.xlabel("points (logarithmic scale)")
pl.legend((pl_auto[0], pl_tri[0]), ('auto', 'tri'))
pl.show()
示例11: doPlot
def doPlot(parallel_aucs, serial_aucs, times, errors):
times = list(times)
times_histo = np.histogram(parallel_aucs,bins=times)
#values,edges = times_histo
parallel_values = parallel_aucs[1:]
edges = times
print(len(parallel_values))
print(len(edges))
serial_values = np.array(serial_aucs[1:])
errors = np.array(errors[1:])
edges = np.array(times[:-1])
print(errors.shape)
print(edges.shape)
print(serial_values.shape)
plt.figure()
plt.plot(edges, parallel_values,label = "Distributed search") #, width=np.diff(edges), ec="k", align="edge")
plt.plot(edges, serial_values, label="Sequential search") #, width=np.diff(edges), ec="k", align="edge")
#plt.fill_between(edges, serial_values-errors,serial_values+errors)
plt.legend(loc = (0.6,0.7))
plt.xlabel("Time [minutes]", fontsize=20)
#plt.yscale('log')
plt.ylabel('Best validation AUC', fontsize=20)
plt.savefig("times.png")
plt.figure()
plt.plot(edges, parallel_values,label = "Distributed search") #, width=np.diff(edges), ec="k", align="edge")
plt.plot(edges, serial_values, label="Sequential search") #, width=np.diff(edges), ec="k", align="edge")
#plt.fill_between(edges, serial_values-errors,serial_values+errors)
plt.legend(loc = (0.6,0.7))
plt.xlabel("Time [minutes]", fontsize=20)
plt.xscale('log')
plt.xlim([0,100])
plt.ylabel('Best validation AUC', fontsize=20)
plt.savefig("times_logx_start.png")
plt.figure()
plt.plot(edges, parallel_values,label = "Distributed search") #, width=np.diff(edges), ec="k", align="edge")
plt.plot(edges, serial_values, label="Sequential search") #, width=np.diff(edges), ec="k", align="edge")
#plt.fill_between(edges, serial_values-errors,serial_values+errors)
plt.legend(loc = (0.6,0.7))
plt.xlabel("Time [minutes]", fontsize=20)
plt.xscale('log')
plt.xlim([100,10000])
plt.ylabel('Best validation AUC', fontsize=20)
plt.savefig("times_logx.png")
示例12: plotPSD
def plotPSD(lcInt, shortExp,**kwargs):
'''
plot power spectral density of lc
return frequencies and powers from periodogram
'''
freq = 1.0/shortExp
f, p = periodogram(lcInt,fs = 1./shortExp)
plt.plot(f,p/np.max(p),**kwargs)
plt.xlabel(r"Frequency (Hz)",fontsize=14)
plt.xscale('log')
plt.ylabel(r"Normalized PSD",fontsize=14)
plt.yscale('log')
plt.title(r"Lightcurve Power Spectrum",fontsize=14)
plt.show()
return f,p
示例13: plot
def plot(self,bins=1000,der=0,log=False,error=False,color=None):
if log==True:
x=np.logspace(log10(self.minX)+1e-7,log10(self.maxX)-1e-7,num=bins)
plt.xscale("log")
else:
x=np.linspace(self.minX,self.maxX,num=bins)
y=self.__call__(x,der=der)
plt.plot(x,y,color=color)
if(error==True):
ymin=self.__call__(x,der=der,value="top")
ymax=self.__call__(x,der=der,value="bottom")
plt.plot(x,ymax,color=color)
plt.plot(x,ymin,color=color)
plt.fill_between(x, ymin,ymax,alpha=0.5,color=color)
示例14: main
def main():
arg_parser = argparse.ArgumentParser(
description="extracts statistical information from a given CSV video file created with video2csv"
)
arg_parser.add_argument("--csvFile", help="the movie file to convert with ffmpeg")
args = arg_parser.parse_args()
if args.csvFile is None:
print("no CSV file specified!")
if not os.path.isfile(args.csvFile):
print("No CSV file given or file does not exist")
sys.exit(127)
iframes = []
pframes = []
with open(args.csvFile) as csvfile:
video_reader = csv.reader(csvfile, delimiter=";")
video_reader.next() # skip first line comment
for row in video_reader:
if "I" in row[1]:
iframes.append(float(row[3]))
else:
pframes.append(float(row[3]))
print("Number of I-frames: %s" % (len(iframes)))
print("Average I-frame size: %s" % (np.average(iframes)))
print("Number of P-frames: %s" % (len(pframes)))
print("Average P-frame size: %s" % (np.average(pframes)))
x1, y1 = list_to_ccdf(iframes)
x2, y2 = list_to_ccdf(pframes)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(x1, y1, label="IFrames")
ax.plot(x2, y2, label="PFrames")
plt.xscale("log")
plt.xlabel("coded picture size in bytes")
plt.ylabel(("P"))
plt.grid()
plt.legend()
plt.show()
示例15: SMBH_mass
def SMBH_mass(save=False):
fig=plot.figure()
#a=ascii.read('data/BHmass_dist.dat',names=['mass','N'],data_start=1)
#mass=(np.round(a['mass']*100.)/100.)
#N=np.array(np.round(a['N']*100),dtype=np.int64)
high=ascii.read('data/BH_mass_High_z.txt',names=['mass'])
low=ascii.read('data/BH_mass_Low_z.txt',names=['mass'])
loghigh=np.log10(high['mass'])
loglow=np.log10(low['mass'])
#ind1=np.arange(0,13,1)
#ind2=np.arange(13,len(mass),1)
#m1=np.repeat(mass[ind1],N[ind1])
#w1=np.repeat(np.repeat(1./max(N[ind1]),len(ind1)),N[ind1])
#m2=np.repeat(mass[ind2],N[ind2])
#w2=np.repeat(np.repeat(1./max(N[ind2]),len(ind2)),N[ind2])
low_bin=np.logspace(np.min(loglow),np.max(loglow),num=14)
plot.hist(low['mass'],bins=low_bin,color='blue',weights=np.repeat(1./28,len(low)))
high_bin=np.logspace(np.min(loghigh),np.max(loghigh),num=10)
plot.hist(high['mass'],bins=high_bin,color='red',alpha=0.7,weights=np.repeat(1./28,len(high)))
plot.annotate('Low Redshift (z < 3) Blazars',xy=(1.5e9,0.8),xycoords='data',fontsize=14,color='blue')
plot.annotate('High Redshift (z > 3) Blazars',xy=(1.5e9,0.5),xycoords='data',fontsize=14,color='red')
plot.xlim([5e7,5e10])
plot.ylim([0,1.05])
plot.xscale('log')
# plot.yscale('log')
plot.xlabel(r'Black Hole Mass (M$_{\odot}$)')
plot.ylabel('Fraction of Known Blazars')
# plot.title('Supermassive Black Hole Mass Evolution')
if save:
plot.savefig('SMBH_mass.png', bbox_inches='tight')
plot.savefig('SMBH_mass.eps', bbox_inches='tight')
else:
plot.show()
return