本文整理汇总了Python中matplotlib.pylab.xlabel函数的典型用法代码示例。如果您正苦于以下问题:Python xlabel函数的具体用法?Python xlabel怎么用?Python xlabel使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了xlabel函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: check_models
def check_models(self):
plt.figure('Bandgap narrowing')
Na = np.logspace(12, 20)
Nd = 0.
dn = 1e14
temp = 300.
for author in self.available_models():
BGN = self.update(Na=Na, Nd=Nd, nxc=dn,
author=author,
temp=temp)
if not np.all(BGN == 0):
plt.plot(Na, BGN, label=author)
test_file = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
'Si', 'check data', 'Bgn.csv')
data = np.genfromtxt(test_file, delimiter=',', names=True)
for name in data.dtype.names[1:]:
plt.plot(
data['N'], data[name], 'r--',
label='PV-lighthouse\'s: ' + name)
plt.semilogx()
plt.xlabel('Doping (cm$^{-3}$)')
plt.ylabel('Bandgap narrowing (K)')
plt.legend(loc=0)
示例2: make_corr1d_fig
def make_corr1d_fig(dosave=False):
corr = make_corr_both_hemi()
lw=2; fs=16
pl.figure(1)#, figsize=(8, 7))
pl.clf()
pl.xlim(4,300)
pl.ylim(-400,+500)
lambda_titles = [r'$20 < \lambda < 30$',
r'$30 < \lambda < 40$',
r'$\lambda > 40$']
colors = ['blue','green','red']
for i in range(3):
corr1d, rcen = corr_1d_from_2d(corr[i])
ipdb.set_trace()
pl.semilogx(rcen, corr1d*rcen**2, lw=lw, color=colors[i])
#pl.semilogx(rcen, corr1d*rcen**2, 'o', lw=lw, color=colors[i])
pl.xlabel(r'$s (Mpc)$',fontsize=fs)
pl.ylabel(r'$s^2 \xi_0(s)$', fontsize=fs)
pl.legend(lambda_titles, 'lower left', fontsize=fs+3)
pl.plot([.1,10000],[0,0],'k--')
s_bao = 149.28
pl.plot([s_bao, s_bao],[-9e9,+9e9],'k--')
pl.text(s_bao*1.03, 420, 'BAO scale')
pl.text(s_bao*1.03, 370, '%0.1f Mpc'%s_bao)
if dosave: pl.savefig('xi1d_3bin.pdf')
示例3: plot_bernoulli_matrix
def plot_bernoulli_matrix(self, show_npfs=False):
"""
Plot the heatmap of the Bernoulli matrix
@self
@show_npfs - Highlight NPFS detections [Boolean]
"""
matrix = self.Bernoulli_matrix
if show_npfs == False:
plot = plt.imshow(matrix)
plot.set_cmap('hot')
plt.colorbar()
plt.xlabel("Bootstraps")
plt.ylabel("Feature")
plt.show()
else:
for i in self.selected_features:
for k in range(len(matrix[i])):
matrix[i,k] = .5
plot = plt.imshow(matrix)
plot.set_cmap('hot')
plt.xlabel("Bootstraps")
plt.ylabel("Feature")
plt.colorbar()
plt.show()
return None
示例4: plot
def plot(self, title=None, **kwargs):
"""Generates a pylab plot from the result set.
``matplotlib`` must be installed, and in an
IPython Notebook, inlining must be on::
%%matplotlib inline
The first and last columns are taken as the X and Y
values. Any columns between are ignored.
Parameters
----------
title: Plot title, defaults to names of Y value columns
Any additional keyword arguments will be passsed
through to ``matplotlib.pylab.plot``.
"""
import matplotlib.pylab as plt
self.guess_plot_columns()
self.x = self.x or range(len(self.ys[0]))
coords = reduce(operator.add, [(self.x, y) for y in self.ys])
plot = plt.plot(*coords, **kwargs)
if hasattr(self.x, 'name'):
plt.xlabel(self.x.name)
ylabel = ", ".join(y.name for y in self.ys)
plt.title(title or ylabel)
plt.ylabel(ylabel)
return plot
示例5: study_redmapper_2d
def study_redmapper_2d():
# I just want to know the typical angular separation for RM clusters.
# I'm going to do this in a lazy way.
hemi = 'north'
rm = load_redmapper(hemi=hemi)
ra = rm['ra']
dec = rm['dec']
ncl = len(ra)
dist = np.zeros((ncl, ncl))
for i in range(ncl):
this_ra = ra[i]
this_dec = dec[i]
dra = this_ra-ra
ddec = this_dec-dec
dxdec = dra*np.cos(this_dec*np.pi/180.)
dd = np.sqrt(dxdec**2. + ddec**2.)
dist[i,:] = dd
dist[i,i] = 99999999.
d_near_arcmin = dist.min(0)*60.
pl.clf(); pl.hist(d_near_arcmin, bins=100)
pl.title('Distance to Nearest Neighbor for RM clusters')
pl.xlabel('Distance (arcmin)')
pl.ylabel('N')
fwhm_planck_217 = 5.5 # arcmin
sigma = fwhm_planck_217/2.355
frac_2sigma = 1.*len(np.where(d_near_arcmin>2.*sigma)[0])/len(d_near_arcmin)
frac_3sigma = 1.*len(np.where(d_near_arcmin>3.*sigma)[0])/len(d_near_arcmin)
print '%0.3f percent of RM clusters are separated by 2-sigma_planck_beam'%(100.*frac_2sigma)
print '%0.3f percent of RM clusters are separated by 3-sigma_planck_beam'%(100.*frac_3sigma)
ipdb.set_trace()
示例6: plot_confusion_matrix
def plot_confusion_matrix(cm, title='', cmap=plt.cm.Blues):
#print cm
#display vehicle, idle, walking accuracy respectively
#display overall accuracy
print type(cm)
# plt.figure(index
plt.imshow(cm, interpolation='nearest', cmap=cmap)
#plt.figure("")
plt.title("Confusion Matrix")
plt.colorbar()
tick_marks = [0,1,2]
target_name = ["driving","idling","walking"]
plt.xticks(tick_marks,target_name,rotation=45)
plt.yticks(tick_marks,target_name,rotation=45)
print len(cm[0])
for i in range(0,3):
for j in range(0,3):
plt.text(i,j,str(cm[i,j]))
plt.tight_layout()
plt.ylabel("Actual Value")
plt.xlabel("Predicted Outcome")
示例7: test_simple_gen
def test_simple_gen(self):
self_con = .8
other_con = 0.05
g = self.gen.gen_stoch_blockmodel(min_degree=1, blocks=5, self_con=self_con, other_con=other_con,
powerlaw_exp=2.1, degree_seq='powerlaw', num_nodes=1000, num_links=3000)
deg_hist = vertex_hist(g, 'total')
res = fit_powerlaw.Fit(g.degree_property_map('total').a, discrete=True)
print 'powerlaw alpha:', res.power_law.alpha
print 'powerlaw xmin:', res.power_law.xmin
if len(deg_hist[0]) != len(deg_hist[1]):
deg_hist[1] = deg_hist[1][:len(deg_hist[0])]
print 'plot degree dist'
plt.plot(deg_hist[1], deg_hist[0])
plt.xscale('log')
plt.xlabel('degree')
plt.ylabel('#nodes')
plt.yscale('log')
plt.savefig('deg_dist_test.png')
plt.close('all')
print 'plot graph'
pos = sfdp_layout(g, groups=g.vp['com'], mu=3)
graph_draw(g, pos=pos, output='graph.png', output_size=(800, 800),
vertex_size=prop_to_size(g.degree_property_map('total'), mi=2, ma=30), vertex_color=[0., 0., 0., 1.],
vertex_fill_color=g.vp['com'],
bg_color=[1., 1., 1., 1.])
plt.close('all')
print 'init:', self_con / (self_con + other_con), other_con / (self_con + other_con)
print 'real:', gt_tools.get_graph_com_connectivity(g, 'com')
示例8: handle
def handle(self, *args, **options):
try:
from matplotlib import pylab as pl
import numpy as np
except ImportError:
raise Exception('Be sure to install requirements_scipy.txt before running this.')
all_names_and_counts = RawCommitteeTransactions.objects.all().values('attest_by_name').annotate(total=Count('attest_by_name')).order_by('-total')
all_names_and_counts_as_tuple_and_sorted = sorted([(row['attest_by_name'], row['total']) for row in all_names_and_counts], key=lambda row: row[1])
print "top ten attestors: (name, number of transactions they attest for)"
for row in all_names_and_counts_as_tuple_and_sorted[-10:]:
print row
n_bins = 100
filename = 'attestor_participation_distribution.png'
x_max = all_names_and_counts_as_tuple_and_sorted[-31][1] # eliminate top outliers from hist
x_min = all_names_and_counts_as_tuple_and_sorted[0][1]
counts = [row['total'] for row in all_names_and_counts]
pl.figure(1, figsize=(18, 6))
pl.hist(counts, bins=np.arange(x_min, x_max, (float(x_max)-x_min)/100) )
pl.title('Histogram of Attestor Participation in RawCommitteeTransactions')
pl.xlabel('Number of transactions a person attested for')
pl.ylabel('Number of people')
pl.savefig(filename)
示例9: fdr
def fdr(p_values=None, verbose=0):
"""Returns the FDR associated with each p value
Parameters
-----------
p_values : ndarray of shape (n)
The samples p-value
Returns
-------
q : array of shape(n)
The corresponding fdr values
"""
p_values = check_p_values(p_values)
n_samples = p_values.size
order = p_values.argsort()
sp_values = p_values[order]
# compute q while in ascending order
q = np.minimum(1, n_samples * sp_values / np.arange(1, n_samples + 1))
for i in range(n_samples - 1, 0, - 1):
q[i - 1] = min(q[i], q[i - 1])
# reorder the results
inverse_order = np.arange(n_samples)
inverse_order[order] = np.arange(n_samples)
q = q[inverse_order]
if verbose:
import matplotlib.pylab as mp
mp.figure()
mp.xlabel('Input p-value')
mp.plot(p_values, q, '.')
mp.ylabel('Associated fdr')
return q
示例10: flipPlot
def flipPlot(minExp, maxExp):
"""假定minEXPy和maxExp是正整数且minExp<maxExp
绘制出2**minExp到2**maxExp次抛硬币的结果
"""
ratios = []
diffs = []
aAxis = []
for i in range(minExp, maxExp+1):
aAxis.append(2**i)
for numFlips in aAxis:
numHeads = 0
for n in range(numFlips):
if random.random() < 0.5:
numHeads += 1
numTails = numFlips - numHeads
ratios.append(numHeads/numFlips)
diffs.append(abs(numHeads-numTails))
plt.figure()
ax1 = plt.subplot(121)
plt.title("Difference Between Heads and Tails")
plt.xlabel('Number of Flips')
plt.ylabel('Abs(#Heads - #Tails)')
ax1.semilogx(aAxis, diffs, 'bo')
ax2 = plt.subplot(122)
plt.title("Heads/Tails Ratios")
plt.xlabel('Number of Flips')
plt.ylabel("#Heads/#Tails")
ax2.semilogx(aAxis, ratios, 'bo')
plt.show()
示例11: plot_q
def plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):
"""
Plot a radiallysymmetric Q model.
plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):
r_min=minimum radius [km], r_max=maximum radius [km], dr=radius
increment [km]
Currently available models (model): cem, prem, ql6
"""
import matplotlib.pylab as plt
r = np.arange(r_min, r_max + dr, dr)
q = np.zeros(len(r))
for k in range(len(r)):
if model == 'cem':
q[k] = q_cem(r[k])
elif model == 'ql6':
q[k] = q_ql6(r[k])
elif model == 'prem':
q[k] = q_prem(r[k])
plt.plot(r, q, 'k')
plt.xlim((0.0, r_max))
plt.xlabel('radius [km]')
plt.ylabel('Q')
plt.show()
示例12: plot_runtime_results
def plot_runtime_results(results):
plt.rcParams["figure.figsize"] = 7,7
plt.rcParams["font.size"] = 22
matplotlib.rc("xtick", labelsize=24)
matplotlib.rc("ytick", labelsize=24)
params = {"text.fontsize" : 32,
"font.size" : 32,
"legend.fontsize" : 30,
"axes.labelsize" : 32,
"text.usetex" : False
}
plt.rcParams.update(params)
#plt.semilogx(results[:,0], results[:,3], 'r-x', lw=3)
#plt.semilogx(results[:,0], results[:,1], 'g-D', lw=3)
#plt.semilogx(results[:,0], results[:,2], 'b-s', lw=3)
plt.plot(results[:,0], results[:,3], 'r-x', lw=3, ms=10)
plt.plot(results[:,0], results[:,1], 'g-D', lw=3, ms=10)
plt.plot(results[:,0], results[:,2], 'b-s', lw=3, ms=10)
plt.legend(["Chain", "Tree", "FFT Tree"], loc="upper left")
plt.xticks([1e5, 2e5, 3e5])
plt.yticks([0, 60, 120, 180])
plt.xlabel("Problem Size")
plt.ylabel("Runtime (sec)")
return results
示例13: plotMassFunction
def plotMassFunction(im, pm, outbase, mmin=9, mmax=13, mstep=0.05):
"""
Make a comparison plot between the input mass function and the
predicted projected correlation function
"""
plt.clf()
nmbins = ( mmax - mmin ) / mstep
mbins = np.logspace( mmin, mmax, nmbins )
mcen = ( mbins[:-1] + mbins[1:] ) /2
plt.xscale( 'log', nonposx = 'clip' )
plt.yscale( 'log', nonposy = 'clip' )
ic, e, p = plt.hist( im, mbins, label='Original Halos', alpha=0.5, normed = True)
pc, e, p = plt.hist( pm, mbins, label='Added Halos', alpha=0.5, normed = True)
plt.legend()
plt.xlabel( r'$M_{vir}$' )
plt.ylabel( r'$\frac{dN}{dM}$' )
#plt.tight_layout()
plt.savefig( outbase+'_mfcn.png' )
mdtype = np.dtype( [ ('mcen', float), ('imcounts', float), ('pmcounts', float) ] )
mf = np.ndarray( len(mcen), dtype = mdtype )
mf[ 'mcen' ] = mcen
mf[ 'imcounts' ] = ic
mf[ 'pmcounts' ] = pc
fitsio.write( outbase+'_mfcn.fit', mf )
示例14: plotFeaturePDF
def plotFeaturePDF(ift, pft, outbase, fmin=0.0, fmax=1.0, fstep=0.01):
"""
Plot a comparison between the input feature distribution and the
feature distribution of the predicted halos
"""
plt.clf()
nfbins = ( fmax - fmin ) / fstep
fbins = np.logspace( fmin, fmax, nfbins )
fcen = ( fbins[:-1] + fbins[1:] ) / 2
plt.xscale( 'log', nonposx='clip' )
plt.yscale( 'log', nonposy='clip' )
ic, e, p = plt.hist( ift, fbins, label='Original Halos', alpha=0.5, normed=True )
pc, e, p = plt.hist( pft, fbins, label='Added Halos', alpha=0.5, normed=True )
plt.legend()
plt.xlabel( r'$\delta$' )
plt.savefig( outbase+'_fpdf.png' )
fdtype = np.dtype( [ ('fcen', float), ('ifcounts', float), ('pfcounts', float) ] )
fd = np.ndarray( len(fcen), dtype = fdtype )
fd[ 'mcen' ] = fcen
fd[ 'imcounts' ] = ic
fd[ 'pmcounts' ] = pc
fitsio.write( outbase+'_fpdf.fit', fd )
示例15: cdf
def cdf(x,colsym="",lab="",lw=4):
""" plot the cumulative density function
Parameters
----------
x : np.array()
colsym : string
lab : string
lw : int
linewidth
Examples
--------
>>> import numpy as np
"""
rcParams['legend.fontsize']=20
rcParams['font.size']=20
x = np.sort(x)
n = len(x)
x2 = np.repeat(x, 2)
y2 = np.hstack([0.0, repeat(np.arange(1,n) / float(n), 2), 1.0])
plt.plot(x2,y2,colsym,label=lab,linewidth=lw)
plt.grid('on')
plt.legend(loc=2)
plt.xlabel('Ranging Error[m]')
plt.ylabel('Cumulative Probability')