本文整理汇总了Python中matplotlib.pylab.title函数的典型用法代码示例。如果您正苦于以下问题:Python title函数的具体用法?Python title怎么用?Python title使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了title函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_experiment_stats
def plot_experiment_stats(e):
sample_data = np.where(e.num_test_genotypes(SAMPLE) > 0)[0]
c_sample = (100.0 * e.called(SAMPLE)[sample_data]) / e.num_test_genotypes(SAMPLE)[sample_data] + 1e-15
fill = 100.*e.fill[sample_data]
snp_data = np.where(e.num_test_genotypes(SNP) > 0)[0]
c_snp = (100.0 * e.called(SNP)[snp_data]) / e.num_test_genotypes(SNP)[snp_data]
# Call % vs. fill %
P.figure(1);
P.clf();
P.plot(fill, c_sample, 'o')
P.xlabel('Fill %')
P.ylabel('Call %')
P.title('Validation Breakdown by Sample, %.2f%% Deleted. r = %.2f' %
(100.0 * e.fraction, np.corrcoef(fill + SMALL_FLOAT, c_sample + SMALL_FLOAT)[0, 1],))
# Call % vs. SNP
P.figure(2);
P.clf();
P.plot(snp_data, c_snp, 'o')
P.xlabel('SNP #')
P.ylabel('Call %')
P.title('Validation Breakdown by SNP, %.2f%% Deleted' % (100.0 * e.fraction,))
return (np.array([snp_data, c_snp]).transpose(),
np.array([sample_data, c_sample, fill]).transpose())
示例2: study_redmapper_2d
def study_redmapper_2d():
# I just want to know the typical angular separation for RM clusters.
# I'm going to do this in a lazy way.
hemi = 'north'
rm = load_redmapper(hemi=hemi)
ra = rm['ra']
dec = rm['dec']
ncl = len(ra)
dist = np.zeros((ncl, ncl))
for i in range(ncl):
this_ra = ra[i]
this_dec = dec[i]
dra = this_ra-ra
ddec = this_dec-dec
dxdec = dra*np.cos(this_dec*np.pi/180.)
dd = np.sqrt(dxdec**2. + ddec**2.)
dist[i,:] = dd
dist[i,i] = 99999999.
d_near_arcmin = dist.min(0)*60.
pl.clf(); pl.hist(d_near_arcmin, bins=100)
pl.title('Distance to Nearest Neighbor for RM clusters')
pl.xlabel('Distance (arcmin)')
pl.ylabel('N')
fwhm_planck_217 = 5.5 # arcmin
sigma = fwhm_planck_217/2.355
frac_2sigma = 1.*len(np.where(d_near_arcmin>2.*sigma)[0])/len(d_near_arcmin)
frac_3sigma = 1.*len(np.where(d_near_arcmin>3.*sigma)[0])/len(d_near_arcmin)
print '%0.3f percent of RM clusters are separated by 2-sigma_planck_beam'%(100.*frac_2sigma)
print '%0.3f percent of RM clusters are separated by 3-sigma_planck_beam'%(100.*frac_3sigma)
ipdb.set_trace()
示例3: plot_values
def plot_values(self, TITLE, SAVE):
plot(self.list_of_densities, self.list_of_pressures)
title(TITLE)
xlabel("Densities")
ylabel("Pressure")
savefig(SAVE)
show()
示例4: pie
def pie(self, key_word_sep=" ", title=None, **kwargs):
"""Generates a pylab pie chart from the result set.
``matplotlib`` must be installed, and in an
IPython Notebook, inlining must be on::
%%matplotlib inline
Values (pie slice sizes) are taken from the
rightmost column (numerical values required).
All other columns are used to label the pie slices.
Parameters
----------
key_word_sep: string used to separate column values
from each other in pie labels
title: Plot title, defaults to name of value column
Any additional keyword arguments will be passsed
through to ``matplotlib.pylab.pie``.
"""
self.guess_pie_columns(xlabel_sep=key_word_sep)
import matplotlib.pylab as plt
pie = plt.pie(self.ys[0], labels=self.xlabels, **kwargs)
plt.title(title or self.ys[0].name)
return pie
示例5: plot_grid_experiment_results
def plot_grid_experiment_results(grid_results, params, metrics):
global plt
params = sorted(params)
grid_params = grid_results.grid_params
plt.figure(figsize=(8, 6))
for metric in metrics:
grid_params_shape = [len(grid_params[k]) for k in sorted(grid_params.keys())]
params_max_out = [(1 if k in params else 0) for k in sorted(grid_params.keys())]
results = np.array([e.results.get(metric, 0) for e in grid_results.experiments])
results = results.reshape(*grid_params_shape)
for axis, included_in_params in enumerate(params_max_out):
if not included_in_params:
results = np.apply_along_axis(np.max, axis, results)
print results
params_shape = [len(grid_params[k]) for k in sorted(params)]
results = results.reshape(*params_shape)
if len(results.shape) == 1:
results = results.reshape(-1,1)
import matplotlib.pylab as plt
#f.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95)
plt.imshow(results, interpolation='nearest', cmap=plt.cm.hot)
plt.title(str(grid_results.name) + " " + metric)
if len(params) == 2:
plt.xticks(np.arange(len(grid_params[params[1]])), grid_params[params[1]], rotation=45)
plt.yticks(np.arange(len(grid_params[params[0]])), grid_params[params[0]])
plt.colorbar()
plt.show()
示例6: test_flux
def test_flux(self):
tol = 150.
inputcat = catalog.read(os.path.join(self.args.tmp_path, 'ccd_1.cat'))
pixradius = 3*self.target["psf"]/self.instrument["PIXEL_SCALE"]
positions = list(zip(inputcat["X_IMAGE"]-1, inputcat["Y_IMAGE"]-1))
fluxes = image.simple_aper_phot(self.im[1], positions, pixradius)
sky_background = image.annulus_photometry(self.im[1], positions,
pixradius+5, pixradius+8)
total_bg_pixels = np.shape(image.build_annulus_mask(pixradius+5, pixradius+8, positions[0]))[1]
total_source_pixels = np.shape(image.build_circle_mask(pixradius,
positions[0]))[1]
estimated_fluxes = fluxes - sky_background*1./total_bg_pixels*total_source_pixels
estimated_magnitude = image.flux2mag(estimated_fluxes,
self.im[1].header['SIMMAGZP'], self.target["exptime"])
expected_flux = image.mag2adu(17.5, self.target["zeropoint"][0],
exptime=self.target["exptime"])
p.figure()
p.hist(fluxes, bins=50)
p.title('Expected flux: {:0.2f}, mean flux: {:1.2f}'.format(expected_flux, np.mean(estimated_fluxes)))
p.savefig(os.path.join(self.figdir,'Fluxes.png'))
assert np.all(np.abs(fluxes-expected_flux) < tol)
示例7: ACF_PACF_plot
def ACF_PACF_plot(self):
#plot ACF and PACF to find the number of terms needed for the AR and MA in ARIMA
# ACF finds MA(q): cut off after x lags
# and PACF finds AR (p): cut off after y lags
# in ARIMA(p,d,q)
lag_acf = acf(self.ts_log_diff, nlags=20)
lag_pacf = pacf(self.ts_log_diff, nlags=20, method='ols')
#Plot ACF:
ax=plt.subplot(121)
plt.plot(lag_acf)
ax.set_xlim([0,5])
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y= -1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color='gray')
plt.axhline(y= 1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color='gray')
plt.title('Autocorrelation Function')
#Plot PACF:
plt.subplot(122)
plt.plot(lag_pacf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y= -1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color='gray')
plt.axhline(y=1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color='gray')
plt.title('Partial Autocorrelation Function')
plt.tight_layout()
示例8: flipPlot
def flipPlot(minExp, maxExp):
"""假定minEXPy和maxExp是正整数且minExp<maxExp
绘制出2**minExp到2**maxExp次抛硬币的结果
"""
ratios = []
diffs = []
aAxis = []
for i in range(minExp, maxExp+1):
aAxis.append(2**i)
for numFlips in aAxis:
numHeads = 0
for n in range(numFlips):
if random.random() < 0.5:
numHeads += 1
numTails = numFlips - numHeads
ratios.append(numHeads/numFlips)
diffs.append(abs(numHeads-numTails))
plt.figure()
ax1 = plt.subplot(121)
plt.title("Difference Between Heads and Tails")
plt.xlabel('Number of Flips')
plt.ylabel('Abs(#Heads - #Tails)')
ax1.semilogx(aAxis, diffs, 'bo')
ax2 = plt.subplot(122)
plt.title("Heads/Tails Ratios")
plt.xlabel('Number of Flips')
plt.ylabel("#Heads/#Tails")
ax2.semilogx(aAxis, ratios, 'bo')
plt.show()
示例9: XXtest5_regrid
def XXtest5_regrid(self):
srcF = cdms2.open(sys.prefix + \
'/sample_data/so_Omon_ACCESS1-0_historical_r1i1p1_185001-185412_2timesteps.nc')
so = srcF('so')[0, 0, ...]
clt = cdms2.open(sys.prefix + '/sample_data/clt.nc')('clt')
dstData = so.regrid(clt.getGrid(),
regridTool = 'esmf',
regridMethod='conserve')
if self.pe == 0:
dstDataMask = (dstData == so.missing_value)
dstDataFltd = dstData * (1 - dstDataMask)
zeroValCnt = (dstData == 0).sum()
if so.missing_value > 0:
dstDataMin = dstData.min()
dstDataMax = dstDataFltd.max()
else:
dstDataMin = dstDataFltd.min()
dstDataMax = dstData.max()
zeroValCnt = (dstData == 0).sum()
print 'Number of zero valued cells', zeroValCnt
print 'min/max value of dstData: %f %f' % (dstDataMin, dstDataMax)
self.assertLess(dstDataMax, so.max())
if False:
pylab.figure(1)
pylab.pcolor(so, vmin=20, vmax=40)
pylab.colorbar()
pylab.title('so')
pylab.figure(2)
pylab.pcolor(dstData, vmin=20, vmax=40)
pylab.colorbar()
pylab.title('dstData')
示例10: EnhanceContrast
def EnhanceContrast(g, r=3, op_kernel=15, silence=True):
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(op_kernel,op_kernel))
opening = cv2.morphologyEx(g, cv2.MORPH_OPEN, kernel)
g_copy = np.asarray(np.copy(g), dtype=np.float)
m_f = np.mean(opening)
u_max = 245; u_min = 10; t_min = np.min(g); t_max = np.max(g)
idx_gt_mf = np.where(g_copy > m_f)
idx_lt_mf = np.where(g_copy <= m_f)
g_copy[idx_gt_mf] = -0.5 * ((u_max-u_min) / (m_f-t_max)**r) * (g_copy[idx_gt_mf]-t_max)**r + u_max
g_copy[idx_lt_mf] = 0.5 * ((u_max-u_min) / (m_f-t_min)**r) * (g_copy[idx_lt_mf]-t_min)**r + u_min
if silence == False:
plt.subplot(1,2,1)
plt.imshow(g, cmap='gray')
plt.title('Original image')
plt.subplot(1,2,2)
plt.imshow(g_copy, cmap='gray')
plt.title('Enhanced image')
plt.show()
return g_copy
示例11: predict
def predict(self,train,test,w,progress=False):
'''
1-nearest neighbor classification algorithm using LB_Keogh lower
bound as similarity measure. Option to use DTW distance instead
but is much slower.
'''
for ind,i in enumerate(test):
if progress:
print str(ind+1)+' points classified'
min_dist=float('inf')
closest_seq=[]
for j in train:
if self.LB_Keogh(i,j[:-1],5)<min_dist:
dist=self.DTWDistance(i,j[:-1],w)
if dist<min_dist:
min_dist=dist
closest_seq=j
self.preds.append(closest_seq[-1])
if self.plotter:
plt.plot(i)
plt.plot(closest_seq[:-1])
plt.legend(['Test Series','Nearest Neighbor in Training Set'])
plt.title('Nearest Neighbor in Training Set - Prediction ='+str(closest_seq[-1]))
plt.show()
示例12: static_view
def static_view(self, m=0, n=1, NS=100):
"""=============================================================
Grafica Estatica (m,n) Modo normal:
Realiza un grafico de densidad del modo de oscilación (m,n)
de la membrana circular en el tiempo t=0
ARGUMENTOS:
*Numero cuantico angular m
*Numero cuantico radial n
*Resolucion del grid (100 por defecto) NS
============================================================="""
# Grid
XM = np.linspace(-1 * self.R, 1 * self.R, NS)
YM = np.linspace(1 * self.R, -1 * self.R, NS)
# ---------------------------------------------------------------
Z = np.zeros((NS, NS))
for i in xrange(0, NS):
for j in xrange(0, NS):
xd = XM[i]
yd = YM[j]
rd = (xd ** 2 + yd ** 2) ** 0.5
thd = np.arctan(yd / xd)
if xd < 0:
thd = np.pi + thd
if rd < self.R:
Z[j, i] = self.f(rd, thd, 0, m, n)
# ---------------------------------------------------------------
Z[0, 0] = -1
Z[1, 0] = 1
plt.xlabel("X (-R,R)")
plt.ylabel("Y (-R,R)")
plt.title("Circular Membrane: (%d,%d) mode" % (m, n))
plt.imshow(Z)
plt.show()
示例13: plot_waveforms
def plot_waveforms(time,voltage,APTimes,titlestr):
"""
plot_waveforms takes four arguments - the recording time array, the voltage
array, the time of the detected action potentials, and the title of your
plot. The function creates a labeled plot showing the waveforms for each
detected action potential
"""
plt.figure()
## Your Code Here
indices = []
for x in range(len(APTimes)):
for i in range(len(time)):
if(time[i]==APTimes[x]):
indices.append(i)
##print indices
Xval = np.linspace(-.003,.003,200)
print len(Xval)
for x in range(len(APTimes)):
plt.plot(Xval, voltage[indices[x]-100:indices[x]+100])
plt.title(titlestr)
plt.xlabel('Time (s)')
plt.ylabel('Voltage (uV)')
plt.hold(True)
plt.show()
示例14: fancy_dendrogram
def fancy_dendrogram(*args, **kwargs):
'''
Source: https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/
'''
from scipy.cluster import hierarchy
import matplotlib.pylab as plt
max_d = kwargs.pop('max_d', None)
if max_d and 'color_threshold' not in kwargs:
kwargs['color_threshold'] = max_d
annotate_above = kwargs.pop('annotate_above', 0)
ddata = hierarchy.dendrogram(*args, **kwargs)
if not kwargs.get('no_plot', False):
plt.title('Hierarchical Clustering Dendrogram (truncated)')
plt.xlabel('sample index or (cluster size)')
plt.ylabel('distance')
for i, d, c in zip(ddata['icoord'], ddata['dcoord'], ddata['color_list']):
x = 0.5 * sum(i[1:3])
y = d[1]
if y > annotate_above:
plt.plot(x, y, 'o', c=c)
plt.annotate("%.3g" % y, (x, y), xytext=(0, -5),
textcoords='offset points',
va='top', ha='center')
if max_d:
plt.axhline(y=max_d, c='k')
return ddata
示例15: plot_histogram
def plot_histogram(self, main="", numrows=1, numcols=1, fignum=1):
"""Plot a histogram of choices and probability sums. Expects probabilities as (at least) a 2D array.
"""
from matplotlib.pylab import bar, xticks, yticks, title, text, axis, figure, subplot
probabilities = self.get_probabilities()
if probabilities.ndim < 2:
raise StandardError, "probabilities must have at least 2 dimensions."
alts = probabilities.shape[1]
width_par = (1 / alts + 1) / 2.0
choice_counts = self.get_choice_histogram(0, alts)
sum_probs = self.get_probabilities_sum()
subplot(numrows, numcols, fignum)
bar(arange(alts), choice_counts, width=width_par)
bar(arange(alts) + width_par, sum_probs, width=width_par, color="g")
xticks(arange(alts))
title(main)
Axis = axis()
text(
alts + 0.5,
-0.1,
"\nchoices histogram (blue),\nprobabilities sum (green)",
horizontalalignment="right",
verticalalignment="top",
)