当前位置: 首页>>代码示例>>Python>>正文


Python pylab.tick_params函数代码示例

本文整理汇总了Python中matplotlib.pylab.tick_params函数的典型用法代码示例。如果您正苦于以下问题:Python tick_params函数的具体用法?Python tick_params怎么用?Python tick_params使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了tick_params函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_bar_FeOx

def plot_bar_FeOx():
    # FeOx
    df = pd.read_csv('../results/dynamic_results/FeOx_vintage_results_0226.csv',index_col=[0,1])
    market_name = ['Household & Furniture','Automotive','Medical','Other Industries','Packaging','Electronics',
                  'Construction & Building']
    amount=[df.loc[mat,'Manufacturing Release']['2010.0']+df.loc[mat,'In Use']['2010.0']+df.loc[mat,'End of Life']['2010.0'] for mat in market_name]
    
    width = 0.15
    last_num = 0
    color=iter(cm.Set1(np.linspace(0,1,7)))
    for name,num in zip(market_name,amount):
        c=next(color)
        if name == 'Construction & Building':
            plt.bar(0.1,num,width,bottom=last_num,color=c,label=name,yerr=1000,error_kw=dict(ecolor='rosybrown', lw=2, capsize=5, capthick=2))
        else:
            plt.bar(0.1,num,width,bottom=last_num,color=c,label=name)
    
        last_num += num
    
    plt.bar(0.7,13860,width,color='salmon',label = 'Static Results (aggregated, all uses)')
    plt.legend(loc='upper left')
    plt.xlim(0,1)
    plt.xticks((0.18,0.78), ('Dynamic Model','Static Model'))
    plt.tick_params(labelsize=14)
    plt.show()
开发者ID:RunshengSong,项目名称:vintage_model,代码行数:25,代码来源:bar_plot.py

示例2: gen_plot

def gen_plot(processes,filename):
    fig = plt.figure(figsize=(10,10))
    ax = fig.add_subplot(111)

    c = Counter(processes).items()
    c.sort(key=itemgetter(1))
    c.reverse()
    #c=c[1:]
    #c=c[:len(c)/2]
    labels, values = zip(*c)
    ll=[]
    for i in labels:
        if not (i[0] == '['):
            ll.append(i.split('/')[-1])
        else:
            ll.append(i)
    print labels
    print "------"
    print ll
    indexes = np.arange(len(labels))
    width = 0.5
    ax.bar(indexes, values, width)
    plt.xticks(indexes+width*0.5 , ll, rotation=90)
    plt.tick_params(axis='both', which='major', labelsize=10)
    
    plt.savefig(filename+'.pdf')
开发者ID:abnarain,项目名称:malware_detection,代码行数:26,代码来源:parser.py

示例3: showStaticImage

def showStaticImage(request, che_str):
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pylab as plt
    plt.style.use('ggplot')
    # change type depending on what's in che_string
    if 'R' in che_str:
        RR = RTG_Read_Rate
    elif 'T' in che_str:
        RR = FEL_Read_Rate
    # create seperate lists for the dates and the read rates
    fel_list = che_str.split('+')
    for fel in fel_list:
        dates = []  # List for storing dates (x axis)
        results = []  # List for storing dictionaries for read rates
        for i in RR.objects.filter(che_id=fel).order_by('date'):
            dates.append(i.date)
            results.append(i.read_rate)

        # Configure the plots for each iteration
        plt.plot(dates, results, '-o', linewidth=1, label=fel)
        plt.xticks(rotation=35)
        plt.tick_params(axis='both', labelsize=8)
        plt.ylim(0, 1.0)
    plt.legend(loc='lower left', fontsize='8')
    response = HttpResponse(content_type='image/png')
    plt.savefig(response, format='png', dpi=96*1.5)
    plt.close()
    return response
开发者ID:brsgr,项目名称:apmt-tech-dashboard,代码行数:29,代码来源:views.py

示例4: plotRocCurves

def plotRocCurves(file_legend):
	pylab.clf()
	pylab.figure(1)
	pylab.xlabel('1 - Specificity', fontsize=12)
	pylab.ylabel('Sensitivity', fontsize=12)
	pylab.title("Need for Referral")
	pylab.grid(True, which='both')
	pylab.xticks([i/10.0 for i in range(1,11)])
	pylab.yticks([i/10.0 for i in range(0,11)])
	pylab.tick_params(axis="both", labelsize=15)

	for file, legend in file_legend:
		points = open(file,"rb").readlines()
		x = [float(p.split()[0]) for p in points]
		y = [float(p.split()[1]) for p in points]
		dev = [float(p.split()[2]) for p in points]
		x = [0.0] + x
		y = [0.0] + y
		dev = [0.0] + dev
	
		auc = np.trapz(y, x) * 100
		aucDev = np.trapz(dev, x) * 100

		pylab.grid()
		pylab.errorbar(x, y, yerr = dev, fmt='-')
		pylab.plot(x, y, '-', linewidth = 1.5, label = legend + u" (AUC = {0:0.1f}% \xb1 {1:0.1f}%)".format(auc,aucDev))

	pylab.legend(loc = 4, borderaxespad=0.4, prop={'size':12})
	pylab.savefig("referral/referral-curves.pdf", format='pdf')
开发者ID:piresramon,项目名称:retina.bovw.plosone,代码行数:29,代码来源:referral.py

示例5: plot_spectrograms

def plot_spectrograms(bsl,rec,rate,y,ax):
    ny_nfft=1024
    i=7
    plt.tick_params(axis='both', labelsize=8)

    Pxx, freq, bins, im = ax[y,0].specgram(bsl[i],NFFT=ny_nfft,Fs=rate)
    ax[y,0].set_yticks(np.arange(0, 50, 10))
    ax[y,0].set_ylim([0, 40])
    if(y==3):
        ax[y,0].set_xlabel("Time, seconds", fontsize=10)
    ax[y,0].set_ylabel("Freq, Hz", fontsize=8)
    ax[y,0].set_title('Subject '+str(y+1)+' Baseline', fontsize=10)
    for label in (ax[y,0].get_xticklabels() + ax[y,0].get_yticklabels()):
        label.set_fontname('Arial')
        label.set_fontsize(8)

    Pxx, freq, bins, im = ax[y,1].specgram(rec[i],NFFT=ny_nfft,Fs=rate)
    ax[y,0].set_yticks(np.arange(0, 50, 10))
    ax[y,1].set_ylim([0, 40])
    #ax[i,1].set_xlim([0, 10000]) #13000])
    if(y==3):
        ax[y,1].set_xlabel("Time, seconds", fontsize=10)
    #ax[i,1].set_ylabel("Freq, Hz")
    ax[y,1].set_title('Subject '+str(y+1)+' Recovery', fontsize=10)
    for label in (ax[y,0].get_xticklabels() + ax[y,0].get_yticklabels()):
        label.set_fontname('Arial')
        label.set_fontsize(8)

    
    return
开发者ID:END-team,项目名称:final-project,代码行数:30,代码来源:feature_comparison.py

示例6: plot_integrated_colors

def plot_integrated_colors(filenames, labels='Z'):
    if type(filenames) is str:
        filenames = [filenames]
        ax = None
        cols = ['k']
    else:
        fig, ax = plt.subplots()
        cols = brewer2mpl.get_map('Spectral', 'Diverging',
                                  len(filenames)).mpl_colors

    if labels == 'Z':
        fmt = '$Z=%.4f$'
        labels = [fmt % float(l.replace('.dat', '').split('Z')[1])
                  for l in filenames]
    else:
        print 'need to fix labels'
        labels = [''] * len(filenames)
    for i, filename in enumerate(filenames):
        data = rsp.fileIO.readfile(filename)
        ycol = 'V-K'
        xcol = 'Age'
        ax = rg.color_color(data, xcol, ycol, xscale='log', ax=ax,
                            plt_kw={'lw': 2, 'color': cols[i],
                                    'label': labels[i]})

    plot_cluster_data(ax)
    ax.legend(frameon=False, loc=0, numpoints=1)
    ax.set_xlabel(r'${\rm %s}$' % xcol, fontsize=20)
    ax.set_ylabel(r'${\rm %s}$' % ycol, fontsize=20)
    plt.tick_params(labelsize=16)
    return ax
开发者ID:philrosenfield,项目名称:TPAGB-calib,代码行数:31,代码来源:integrated_colors.py

示例7: corr

def corr(data,labels,**kwargs):
    data=np.transpose(data)
    corrs=np.corrcoef(data)
    
    labelsDict=dict((i,labels[i]) for i in range(len(labels)))
    if 'makeGraph' in kwargs.keys():
        if kwargs['makeGraph']==True:
            fig,ax=plt.subplots()
    #         plt.pcolor(corrs)
            plt.pcolor(corrs>=kwargs['Tresh'])
            plt.xticks([i for i in range(44)],rotation=45)
            
            ax.set_xticklabels(labels)
            ax.set_yticklabels(labels)
            plt.tick_params(axis='both', which='both', labelsize=7)
    #         plt.imshow(corrs>=kwargs['Tresh'],interpolation=None)
    #         plt.colorbar()
            plt.show()
        
    if 'undGraph' in kwargs:
        plt.figure()
        if kwargs['undGraph']==True:
            gcorrs=np.copy(corrs)
            if 'Tresh' in kwargs:
                idx=np.where(corrs<=kwargs['Tresh'])
                gcorrs[idx]=0
                gcorrs=gcorrs-np.identity(gcorrs.shape[0])
                
            
            G=nx.from_numpy_matrix(np.triu(gcorrs))
            for node in nx.nodes(G):
                edges=np.sum([ 1 for i in nx.all_neighbors(G, node)])
                if edges==0:
                    G.remove_node(node)
                    labelsDict.pop(node)

            G=nx.relabel_nodes(G,labelsDict)
            
            pos=nx.spring_layout(G,iterations=200)
            
#             pos=nx.shell_layout(G)
            nx.draw_networkx(G,pos,font_size=9)
#             nx.draw_spring(G)
#             nx.draw(G,pos,font_size=9)
            plt.show()
            
            
    if 'ret' in kwargs.keys():    
        if kwargs['ret']==True:
            corrs2=np.triu(corrs-np.diagflat(np.diag(corrs)))
            i,j=np.where(np.abs(corrs2)>=kwargs['Tresh'])
    #         print corrs2[i,j]
    #         print i
    #         print j
            feats=set(list(i)+list(j))
    #         print feats
            return feats
开发者ID:julian-ramos,项目名称:kindsOfUsers,代码行数:57,代码来源:viz.py

示例8: plot

def plot(a,fileig,Q,point_names,ef=0,fildos=None,ymin=None,ymax=None
        ,pdos_pref=None,atoms=None,pdos_max=None):
    """docstring for plot"""
    fig = plt.figure(0,(12, 8))
    assert len(Q) == len(point_names), "Length of Q and point_names should be the same!"
    if fildos != None:
        ax = plt.axes([.06, .05, .7, .85])
        ef,e,dos = dos_reader(fildos)
        e -= ef
    elif pdos_pref:
        ax = plt.axes([.06, .05, .7, .85])
    else:
        ax = fig.add_subplot(111)
        
    eig,kpts = eig_reader(fileig)
    eig -= ef
    q = kline(kpts,a)
    for i in xrange(eig.shape[1]):
        plt.plot(q,eig[:,i],'k-',lw=1)
    plt.xticks(q[Q], point_names)
    plt.tick_params(axis='x', labeltop='on',labelsize=15,labelbottom='off')
    plt.yticks(fontsize=15)
    plt.xlim(q[0], q[-1])
    plt.plot(q,[0]*len(q),'r--')
    plt.xlabel("Reduced wave number", fontsize=18)
    plt.ylabel("Electron Energy (eV)", fontsize=18)
    plt.grid('on')
    plt.ylim(ymin,ymax)
    ymin,ymax = plt.ylim()
    # add an extra ef on the right of the axis.... so troublesome
#    ax1 = plt.axes([.11, .05, .64, .85],frameon=False)
    ax1 = plt.axes(ax.get_position(),frameon=False)
    ax1.yaxis.tick_right()
    # plt.tick_params(axis='y', labelleft='on',labelright='on',labelsize=15)    
    ax1.xaxis.set_ticklabels([])
    ax1.xaxis.set_ticks_position('none')
    plt.yticks([0],['$\epsilon_{\mathrm{F}}$'],fontsize=15)
    plt.ylim(ymin,ymax)

    if fildos:
        plt.axes([.79, .05, 0.20, .85])
        plt.plot(dos,e,'k-',lw=1)
        plt.ylim(ymin,ymax)
        plt.xticks([],[])
        plt.yticks([],[])
        plt.xlabel("DOS",fontsize=18)
    
    if pdos_pref:
        ax2 = plt.axes([.79, .05, 0.20, .85])
        plot_pdos(pdos_pref,atoms,ax=ax2)
        ax2.set_xticks([],[])
        ax2.set_yticks([],[])
        ax2.set_ylim(ymin,ymax)
        ax2.set_xlim(0,pdos_max)
    plt.show()
    plt.close()
开发者ID:xiahongze,项目名称:dft-tools-mods,代码行数:56,代码来源:abplotter.py

示例9: plot_autocorrs

    def plot_autocorrs(self, axis=0, n_rows=4, n_cols=8):
        """ Plot autocorrelations for all antennas
        """
        self.current_plot = 'multi'
        self.ax_zoomed = False
        
        bls = self.uv.d_uv_data['BASELINE']

        # Extract the relevant baselines using a truth array
        # bls = bls.tolist()
        bl_ids = set([256*i + i for i in range(1, n_rows * n_cols + 1)])
        bl_truths = np.array([(b in bl_ids) for b in bls])
        
        #print self.uv.d_uv_data['DATA'].shape
        #x_data    = self.d_uv_data['DATA'][bl_truths,0,0,:,0,axis]  # Baselines, freq and stokes
        #x_cplx    = x_data[:,:,0] + 1j * x_data[:,:,1]

        x_cplx  = self.stokes[axis][bl_truths]


        
        # Plot the figure
        #print self.uv.n_ant
        fig = self.sp_fig
        figtitle = '%s %s: %s -- %s'%(self.uv.telescope, self.uv.instrument, self.uv.source, self.uv.date_obs)
        for i in range(n_rows):
            for j in range(n_cols):
                ax = fig.add_subplot(n_rows, n_cols, i*n_cols + j +1)
                ax.set_title(self.uv.d_array_geometry['ANNAME'][i*n_cols + j], fontsize=10)
                #ax.set_title("%s %s"%(i, j))
                
                x = x_cplx[i*n_cols+j::self.uv.n_ant]
                
                if self.scale_select.currentIndex() == 0 or self.scale_select.currentIndex() == 1:
                    if x.shape[0] == self.uv.n_ant:
                        self.plot_spectrum(ax, x, label_axes=False)
                    else:
                        self.plot_spectrum(ax, x, stat='max', label_axes=False)
                        self.plot_spectrum(ax, x, stat='med', label_axes=False)
                        self.plot_spectrum(ax, x, stat='min', label_axes=False)
                else:
                    self.plot_spectrum(ax, x, label_axes=False)
                self.updateFreqAxis(ax)
                
                if i == n_rows-1:
                    ax.set_xlabel('Freq')
                if j == 0:
                    ax.set_ylabel('Amplitude')
                
                plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
                plt.tick_params(axis='both', which='major', labelsize=10)
                plt.tick_params(axis='both', which='minor', labelsize=8)
                plt.xticks(rotation=30)
        
        plt.subplots_adjust(left=0.05, right=0.98, top=0.95, bottom=0.1, wspace=0.3, hspace=0.45)
        return fig, ax
开发者ID:jaycedowell,项目名称:interfits,代码行数:56,代码来源:qtuv.py

示例10: plot_density

    def plot_density(self, vector, coords, max_el=1.0, min_el=0.0, **kwrds):

        maxel = max_el*np.max(vector)
        minel = min_el*np.max(vector)
        print maxel, minel
        xmin = 0.0
        xmax = 0.0
        ymin = 0.0
        ymax = 0.0

        for i in xrange(len(vector)):

            if maxel != minel:
                msize = vector[i] * 180. / np.sqrt(np.sqrt(len(vector))) / (maxel-minel)
                #R = 1/(maxel) * (density1d[i].real)
                #G = 1/(maxel) * (maxel - density1d[i].real)
                if vector[i] >= maxel:
                    R = 1
                    G = 0
                elif vector[i] <= minel:
                    G = 1
                    R = 0
                else:
                    R = 0.999 / (maxel - minel) * (vector[i].real - minel)
                    G = 0.999 / (maxel - minel) * (maxel - vector[i].real)

                B = 0.0
            else:
                msize = 0.0
                R = 0.0
                G = 0.0
                B = 0.0

            plt.plot(coords[i][0], coords[i][1], 'o', mfc='k', ms=2)
            plt.plot(coords[i][0], coords[i][1], 'o', mfc=(R,G,B), ms=msize, **kwrds)

            if coords[i][0] < xmin:
                xmin = coords[i][0]
            elif coords[i][0] > xmax:
                xmax = coords[i][0]
            elif coords[i][1] < ymin:
                ymin = coords[i][0]
            elif coords[i][1] > ymax:
                ymax = coords[i][1]

        dx = (xmax-xmin) / 10.
        dy = (ymax-ymin) / 10.
            
        plt.xlim(xmin - 0.5*dx, xmax + 0.5*dx)
        plt.ylim(ymin - 0.5*dy, ymax + 0.5*dy)
        
        plt.xlabel(r'$x$', fontsize = 26)
        plt.ylabel(r'$y$', fontsize = 26)
        plt.tick_params(labelsize=22)
        #plt.axes().set_aspect('equal')
        return None    
开发者ID:zonksoft,项目名称:envTB,代码行数:56,代码来源:plotter.py

示例11: plot_matrix

    def plot_matrix(data):
        plt.tick_params(
            axis='both', which='both', labelleft='off',
            bottom='off', top='off', labelbottom='off', left='off', right='off')

        plt.imshow(
            data,
            interpolation='nearest', cmap=get_matrix_cmap(),
            vmin=0, vmax=3)
        plt.colorbar(ticks=range(np.max(data)+1), extend='min')
开发者ID:kpj,项目名称:SDEMotif,代码行数:10,代码来源:network_matrix.py

示例12: violin_plot

def violin_plot(ax, values_list, measure_name, group_names, fontsize, color='blue',  ttest=False):
    '''
    This is a little wrapper around the statsmodels violinplot code
    so that it looks nice :)    
    '''    
    
    # IMPORTS
    import matplotlib.pylab as plt
    import statsmodels.api as sm
    import numpy as np
    
    # Make your violin plot from the values_list
    # Don't show the box plot because it looks a mess to be honest
    # we're going to overlay a boxplot on top afterwards
    plt.sca(ax)
    
    # Adjust the font size
    font = { 'size'   : fontsize}
    plt.rc('font', **font)

    max_value = np.max(np.concatenate(values_list))
    min_value = np.min(np.concatenate(values_list))
    
    vp = sm.graphics.violinplot(values_list,
                            ax = ax,
                            labels = group_names,
                            show_boxplot=False,
                            plot_opts = { 'violin_fc':color ,
                                          'cutoff': True,
                                          'cutoff_val': max_value,
                                          'cutoff_type': 'abs'})
    
    # Now plot the boxplot on top
    bp = plt.boxplot(values_list, sym='x')
    
    for key in bp.keys():
        plt.setp(bp[key], color='black', lw=fontsize/10)
        
    # Adjust the power limits so that you use scientific notation on the y axis
    plt.ticklabel_format(style='sci', axis='y')
    ax.yaxis.major.formatter.set_powerlimits((-3,3))
    plt.tick_params(axis='both', which='major', labelsize=fontsize)

    # Add the y label
    plt.ylabel(measure_name, fontsize=fontsize)
    
    # And now turn off the major ticks on the y-axis
    for t in ax.yaxis.get_major_ticks(): 
        t.tick1On = False 
        t.tick2On = False

    return ax
开发者ID:KirstieJane,项目名称:DESCRIBING_DATA,代码行数:52,代码来源:create_violin_plots.py

示例13: draw_gene_isoforms

def draw_gene_isoforms(D, gene_id, outfile, outfmt):

  import matplotlib.patches as mpatches;
  from matplotlib.collections import PatchCollection;

  ISO = D[_.orig_gene == gene_id].GroupBy(_.alt_gene).Without(_.orig_gene, _.orig_exon_start, _.orig_exon_end).Sort(_.alt_gene);

  plt.cla();

  y_loc   = 0;
  y_step  = 30;
  n_iso   = ISO.alt_gene.Shape()();
  origins = np.array([ [0, y] for y in xrange((y_step * (n_iso+1)),n_iso,-y_step) ]);
  patch_h = 10;

  xlim = [ ISO.exon_start.Min().Min()(), ISO.exon_end.Max().Max()()];
  ylim = [ y_step, (y_step * (n_iso+1)) + 2*patch_h];

  patches = [];
  
  for (origin, alt_id, starts, ends, exons, retention, alt5, alt3, skipped, new, ident) in zip(origins, *ISO()):

    plt.gca().text( min(starts), origin[1] + patch_h, alt_id, fontsize=10);
    for (exon_start, exon_end, exon_coverage, exon_retention, exon_alt5, exon_alt3, exon_skipped, exon_new, exon_ident) in zip(starts, ends, exons, retention, alt5, alt3, skipped, new, ident):
      if not(exon_skipped):
        patch = mpatches.FancyBboxPatch(origin + [ exon_start, 0], exon_end - exon_start, patch_h, boxstyle=mpatches.BoxStyle("Round", pad=0), color=draw_gene_isoforms_color(exon_retention, exon_alt5, exon_alt3, exon_skipped, exon_new, exon_ident));
        text_x, text_y = origin + [ exon_start, +patch_h/2];
        annots = zip(['Retention', "Alt 5'", "Alt 3'", "Skipped", 'New'], [exon_retention, exon_alt5, exon_alt3, exon_skipped, exon_new]);
        text  = '%s: %s' %( ','.join([str(exid) for exid in exon_coverage]), '\n'.join([ s for (s,b) in annots if b]));
        plt.gca().text(text_x, text_y, text, fontsize=10, rotation=-45);
        plt.gca().add_patch(patch);

        if all(ident):
          plt.gca().plot([exon_start, exon_start], [origin[1], 0], '--k', alpha=0.3);
          plt.gca().plot([exon_end, exon_end], [origin[1], 0], '--k', alpha=0.3);
        #fi
      #fi
    #efor
  #efor

  plt.xlim(xlim);
  plt.ylim(ylim);
  plt.title('Isoforms for gene %s' % gene_id);
  plt.xlabel('Location on chromosome');
  plt.gca().get_yaxis().set_visible(False);
  plt.gca().spines['top'].set_color('none');
  plt.gca().spines['left'].set_color('none');
  plt.gca().spines['right'].set_color('none');
  plt.tick_params(axis='x', which='both', top='off', bottom='on');
  plt.savefig(outfile, format=outfmt);

  return ISO;
开发者ID:WenchaoLin,项目名称:delftrnaseq,代码行数:52,代码来源:splicing_statistics.py

示例14: plot_pop_size_across_time

 def plot_pop_size_across_time(params,
                               ymin=ymin,
                               ymax=ymax):
     offset = step_size / 250.
     num_xticks = 11
     ax = sns.tsplot(time="t", value="log2_pop_size", unit="sim_num",
                     condition="policy", color=policy_colors,
                     err_style="ci_band",
                     ci=95,
                     data=df,
                     legend=False)
     for policy_num, policy in enumerate(policy_colors):
         error_df = summary_df[summary_df["policy"] == policy]
         c = policy_colors[policy]
         assert (len(error_df["t"]) == len(time_obj.t) == \
                 len(error_df["log2_pop_size"]["mean"]))
     plt.xlabel("Time step", fontsize=10)
     plt.ylabel("Pop. size ($\log_{2}$)", fontsize=10)
     # assuming glucose is listed first
     gluc_growth_rate = params["nutr_growth_rates"][0]
     galac_growth_rate = params["nutr_growth_rates"][1]
     if title is not None:
         plt.title(title, fontsize=8)
     else:
         plt.title(r"$P_{0} = %d$, " \
                   r"$\mu_{\mathsf{Glu}} = %.2f, \mu_{\mathsf{Gal}} = %.2f$, " \
                   r"$\mu_{\mathsf{Mis}} = %.2f$, lag = %d, " \
                   r"%d iters" %(init_pop_size,
                                 gluc_growth_rate,
                                 galac_growth_rate,
                                 params["mismatch_growth_rate"],
                                 params["decision_lag_time"],
                                 params["num_sim_iters"]),
                  fontsize=8)
     c = 0.5
     plt.xlim([min(df["t"]) - c, max(df["t"]) + c])
     if ymin is None:
         ymin = int(np.log2(init_pop_size))
     plt.ylim(ymin=ymin)
     plt.xlim([time_obj.t.min(),
               time_obj.t.max()])
     plt.xticks(range(int(time_obj.t.min()), int(time_obj.t.max()) + x_step,
                      x_step),
                fontsize=8)
     if yticks is not None:
         plt.yticks(yticks, fontsize=8)
         plt.ylim(yticks[0], yticks[-1])
     sns.despine(trim=True, offset=2*time_obj.step_size)
     plt.tick_params(axis='both', which='major', labelsize=8,
                     pad=2)
开发者ID:yarden,项目名称:paper_metachange,代码行数:50,代码来源:model_switch_ssm.py

示例15: plot_bar_plot

def plot_bar_plot(entropy_rates, filename, y_label):
    def_font_size = matplotlib.rcParams['font.size']
    matplotlib.rcParams.update({'font.size': 25})
    # entropy_rates = entropy_rates.T
    f, ax = plt.subplots(figsize=(20, 8))
    hatch = ['-', 'x', '\\', '*', 'o', 'O', '.', '/'] * 2
    #symbols = ['$\\clubsuit$', '$\\bigstar$', '$\\diamondsuit$', '$\\heartsuit', '$\\spadesuit$', '$\\blacksquare$']
    symbols = ['O', 'E', 'D', 'I', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M']
    colors = ['blue', 'green', 'red', 'black', 'magenta', 'orange', 'gray'] * 2
    num_ds = len(entropy_rates.columns)
    num_ticks = len(entropy_rates)
    width = 0.7
    dataset_offset = width / num_ds
    space = 0.02
    rects = list()
    for idx, (i, h, c, s) in enumerate(zip(entropy_rates.columns, hatch, colors, symbols)):
        pos = 0. - (width / 2) + idx * dataset_offset + idx * (space/2)
        pos = np.array([pos + idx for idx in xrange(num_ticks)])
        # print idx, step, width
        #print pos
        #print width
        #print i
        rects.append(
            ax.bar(pos, entropy_rates[i], (width / num_ds - space), color='white', label=s + ': ' + i.decode('utf8'),
                   lw=2, alpha=1., hatch=h, edgecolor=c))
        autolabel(s, pos + (width / num_ds - space) / 2, entropy_rates[i], ax)
        # ax = entropy_rates[i].plot(position=pos,width=0.8, kind='bar',rot=20,ax=ax, alpha=1,lw=0.4,hatch=h,color=c)

    ax.set_position([0.1, 0.2, .8, 0.6])
    plt.xticks(np.array(range(len(entropy_rates))), entropy_rates.index, rotation=0)
    ax.set_axisbelow(True)
    ax.xaxis.grid(False)
    ax.yaxis.grid(True, linewidth=3, alpha=0.2, ls='--')
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)
    plt.tick_params(labelright=True)
    plt.legend(ncol=2, loc='upper center', bbox_to_anchor=(0.5, 1.35))
    plt.ylim([min(list(entropy_rates.min())) * .95, max(list(entropy_rates.max())) * 1.05])
    plt.ylabel(y_label)
    # plt.subplots_adjust(top=0.7)
    # plt.tight_layout()
    plt.savefig(filename, bbox_tight=True)
    plt.close('all')
    os.system('pdfcrop ' + filename + ' ' + filename)
    # plt.show()
    matplotlib.rcParams.update({'font.size': def_font_size})
开发者ID:floriangeigl,项目名称:RandomSurfers,代码行数:48,代码来源:plotting.py


注:本文中的matplotlib.pylab.tick_params函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。