本文整理汇总了Python中matplotlib.pylab.text函数的典型用法代码示例。如果您正苦于以下问题:Python text函数的具体用法?Python text怎么用?Python text使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了text函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotP2
def plotP2():
'''A function to plot the two-angle Normalized Scattering
Phase Function. For comparison see Myneni 1988c fig.1.
Output: plot of P2 function
'''
N = 32
g_wt = np.array(gauss_wt[str(N)])
mu_l = np.array(gauss_mu[str(N)])
zen = np.arccos(mu_l)
a = 180.*np.pi/180. # view azimuth
view = []
for z in zen:
view.append((z,a))
sun = (170./180.*np.pi,0./180.*np.pi) # sun zenith, azimuth
arch = 'u'
refl = 0.5
trans = 0.5
y = []
for v in view:
y.append(P2(v, sun, arch, refl, trans))
fig, ax = plt.subplots(1)
plt.plot(mu_l,y, 'r--')
s = '''sun zenith:%.2f, sun azimuth:%.2f, arch:%s
view azimuth:%.2f, refl:%.2f, trans:%.2f''' % \
(sun[0]*180/np.pi,sun[1]*180/np.pi, arch,\
a*180/np.pi, refl, trans)
props = dict(boxstyle='round',facecolor='wheat',alpha=0.5)
plt.text(.5,.5, s, bbox = props, transform=ax.transAxes,\
horizontalalignment='center', verticalalignment='center')
plt.xlabel(r"$\mu$ (cosine of exit zenith)")
plt.ylabel(r"P($\Omega$, $\Omega$0)")
plt.title("P (Normalized Scattering Phase Function)")
plt.show()
示例2: _fig_density
def _fig_density(sweight, surweight, pval, nlm):
"""
Plot the histogram of sweight across the image
and the thresholds implied by the surrogate model (surweight)
"""
import matplotlib.pylab as mp
# compute some thresholds
nlm = nlm.astype('d')
srweight = np.sum(surweight,1)
srw = np.sort(srweight)
nitem = np.size(srweight)
thf = srw[int((1-min(pval,1))*nitem)]
mnlm = max(1,nlm.mean())
imin = min(nitem-1,int((1.-pval/mnlm)*nitem))
thcf = srw[imin]
h,c = np.histogram(sweight,100)
I = h.sum()*(c[1]-c[0])
h = h/I
h0,c0 = np.histogram(srweight,100)
I0 = h0.sum()*(c0[1]-c0[0])
h0 = h0/I0
mp.figure(1)
mp.plot(c,h)
mp.plot(c0,h0)
mp.legend(('true histogram','surrogate histogram'))
mp.plot([thf,thf],[0,0.8*h0.max()])
mp.text(thf,0.8*h0.max(),'p<0.2, uncorrected')
mp.plot([thcf,thcf],[0,0.5*h0.max()])
mp.text(thcf,0.5*h0.max(),'p<0.05, corrected')
mp.savefig('/tmp/histo_density.eps')
mp.show()
示例3: plot_confusion_matrix
def plot_confusion_matrix(cm, title='', cmap=plt.cm.Blues):
#print cm
#display vehicle, idle, walking accuracy respectively
#display overall accuracy
print type(cm)
# plt.figure(index
plt.imshow(cm, interpolation='nearest', cmap=cmap)
#plt.figure("")
plt.title("Confusion Matrix")
plt.colorbar()
tick_marks = [0,1,2]
target_name = ["driving","idling","walking"]
plt.xticks(tick_marks,target_name,rotation=45)
plt.yticks(tick_marks,target_name,rotation=45)
print len(cm[0])
for i in range(0,3):
for j in range(0,3):
plt.text(i,j,str(cm[i,j]))
plt.tight_layout()
plt.ylabel("Actual Value")
plt.xlabel("Predicted Outcome")
示例4: double_label
def double_label(self, labels, position="horizontal", **kwargs):
"""
Plots 2 colors in a square:
vertical
+-------------+
| /|
| 1st / |
| / |
horizontal | / | horizontal
| / |
| / 2nd |
|/ |
+-------------+
vertical
"""
assert len(labels) == 2
if position == 'horizontal':
x1 = self.x - self.dx*0.25
x2 = self.x + self.dx*1.25
y1 = y2 = self.y + self.dy/2
ha1, ha2 = 'right', 'left'
va1 = va2 = 'center'
elif position == 'vertical':
x1 = x2 = self.x + self.dx/2
y1 = self.y + self.dy*1.25
y2 = self.y - self.dy*0.25
ha1 = ha2 = 'center'
va1, va2 = 'bottom', 'top'
else:
raise ValueError("`position` must be one of:"
"'horizontal', 'vertical'")
fontdict = kwargs.get('fontdict', {})
plt.text(x1, y1, labels[0], ha=ha1, va=va1, fontdict=fontdict)
plt.text(x2, y2, labels[1], ha=ha2, va=va2, fontdict=fontdict)
示例5: plot_histogram
def plot_histogram(self, main="", numrows=1, numcols=1, fignum=1):
"""Plot a histogram of choices and probability sums. Expects probabilities as (at least) a 2D array.
"""
from matplotlib.pylab import bar, xticks, yticks, title, text, axis, figure, subplot
probabilities = self.get_probabilities()
if probabilities.ndim < 2:
raise StandardError, "probabilities must have at least 2 dimensions."
alts = probabilities.shape[1]
width_par = (1 / alts + 1) / 2.0
choice_counts = self.get_choice_histogram(0, alts)
sum_probs = self.get_probabilities_sum()
subplot(numrows, numcols, fignum)
bar(arange(alts), choice_counts, width=width_par)
bar(arange(alts) + width_par, sum_probs, width=width_par, color="g")
xticks(arange(alts))
title(main)
Axis = axis()
text(
alts + 0.5,
-0.1,
"\nchoices histogram (blue),\nprobabilities sum (green)",
horizontalalignment="right",
verticalalignment="top",
)
示例6: plot_biggest
def plot_biggest(self,n_plot):
# plots the n_plot biggest clusters
s = self.cluster_membership.sum(0)
order = np.argsort(s)
for i in np.arange(s.size-1,s.size-n_plot-1,-1):
cluster = order[0,i]
peaks = np.nonzero(self.cluster_membership.getcol(cluster))[0]
plt.figure(figsize=(8,8))
plt.subplot(1,2,1)
plt.plot(self.peak_data.mass[peaks],self.peak_data.rt[peaks],'ro')
plt.plot(self.peak_data.transformed[peaks,cluster].toarray(),self.peak_data.rt[peaks],'ko')
plt.subplot(1,2,2)
for peak in peaks:
plt.plot((self.peak_data.mass[peak], self.peak_data.mass[peak]),(0,self.peak_data.intensity[peak]))
tr = self.peak_data.possible[peak,cluster]-1
x = self.peak_data.mass[peak] + random.random()
y = self.peak_data.intensity[peak] + random.random()
plt.text(x,y,self.peak_data.transformations[tr].name)
title_string = "Mean RT: " + str(self.cluster_model.cluster_rt_mean[cluster]) + "(" + \
str(1.0/self.cluster_model.cluster_rt_prec[cluster]) + ")"
if hasattr(self.cluster_model, 'cluster_mass_mean'):
title_string += " Mean Mass: " + str(self.cluster_model.cluster_mass_mean[cluster]) + \
"(" + str(1.0/self.cluster_model.cluster_mass_prec[cluster]) + ")"
plt.title(title_string)
plt.show()
示例7: minj_mflux
def minj_mflux(*args,**kwargs):
Qu = jana.quantities()
Minj_List =[]
Minj_MHD_List=[]
for i in range(len(args[1])):
Minj_List.append(Qu.Mflux(args[1][i],Mstar=args[0][i],scale=True)['Mfr']+Qu.Mflux(args[1][i],Mstar=args[0][i],scale=True)['Mfz'])
MHD_30minj = Qu.Mflux(args[2],Mstar=30.0,scale=True)['Mfr']+Qu.Mflux(args[2],Mstar=30.0,scale=True)['Mfz']
for i in args[0]:
Minj_MHD_List.append(MHD_30minj*np.sqrt(i/30.0))
f1 = plt.figure(num=1)
ax1 = f1.add_subplot(211)
plt.axis([10.0,70.0,2.0e-5,7.99e-5])
plt.plot(args[0],Minj_MHD_List,'k*')
plt.plot(args[0],Minj_List,'ko')
plt.minorticks_on()
locs,labels = plt.yticks()
plt.yticks(locs, map(lambda x: "%.1f" % x, locs*1e5))
plt.text(0.0, 1.03, r'$10^{-5}$', transform = plt.gca().transAxes)
plt.xlabel(r'Stellar Mass : $M_{*} [M_{\odot}]$')
plt.ylabel(r' $\dot{M}_{\rm vert} + \dot{M}_{\rm rad}\, [M_{\odot}\,\rm yr^{-1}]$')
ax2 = f1.add_subplot(212)
plt.axis([10.0,70.0,0.0,50.0])
plt.plot(args[0],100*((np.array(Minj_List)-np.array(Minj_MHD_List))/np.array(Minj_MHD_List)),'k^')
plt.minorticks_on()
plt.xlabel(r'Stellar Mass : $M_{*} [M_{\odot}]$')
plt.ylabel(r'$\%$ Change in Total Mass Outflow Rates')
示例8: segmentation
def segmentation(self, threshold):
img = self.spectrogram["data"]
mask = (img > threshold).astype(np.float)
hist, bin_edges = np.histogram(img, bins=60)
bin_centers = 0.5*(bin_edges[:-1] + bin_edges[1:])
binary_img = mask > 0.5
plt.figure(figsize=(11,8))
plt.subplot(131)
plt.imshow(img)
plt.axis('off')
plt.subplot(132)
plt.plot(bin_centers, hist, lw=2)
print(threshold)
plt.axvline(threshold, color='r', ls='--', lw=2)
plt.text(0.57, 0.8, 'histogram', fontsize=20, transform = plt.gca().transAxes)
plt.text(0.45, 0.75, 'threshold = '+ str(threshold)[0:5], fontsize=15, transform = plt.gca().transAxes)
plt.yticks([])
plt.subplot(133)
plt.imshow(binary_img)
plt.axis('off')
plt.subplots_adjust(wspace=0.02, hspace=0.3, top=1, bottom=0.1, left=0, right=1)
plt.show()
print(img.max())
print(binary_img.max())
return mask
示例9: plot_clustering
def plot_clustering(items, xs, ys, labels=None, texts=None, shapes=None):
labels = [0] * len(xs) if labels is None else labels
texts = [''] * len(xs) if texts is None else texts
shapes = [0] * len(xs) if shapes is None else shapes
for item, x, y, label, text, shape in zip(items, xs, ys, labels, texts, shapes):
plt.plot(x, y, markers[shape], color=colors[label])
plt.text(x, y, text)
示例10: item_clustering
def item_clustering(data, skill, cluster_number=3, plot=True):
pk, level = data.get_skill_id(skill)
items = data.get_items_df()
items = items[items["skill_lvl_" + str(level)] == pk]
items = items[items["visualization"] != "pairing"]
corr = compute_corr(data)
corr = pd.DataFrame(corr, index=items.index, columns=items.index)
print("Corr ({}) contain total {} values and from that {} nans".format(corr.shape, corr.size, corr.isnull().sum().sum()))
corr[corr.isnull()] = 0
sc = SpectralClusterer(corr, kcut=corr.shape[0] / 2, mutual=True)
# sc = SpectralClusterer(corr, kcut=30, mutual=True)
labels = sc.run(cluster_number=cluster_number, KMiter=50, sc_type=2)
if plot:
colors = "rgbyk"
visualizations = list(items["visualization"].unique())
for i, p in enumerate(corr.columns):
item = items.loc[p]
plt.plot(sc.eig_vect[i,1], sc.eig_vect[i,2], "o", color=colors[visualizations.index(item["visualization"])])
# plt.plot(sc.eig_vect[i, 1], sc.eig_vect[i, 2], "o", color=colors[labels[i]])
plt.text(sc.eig_vect[i, 1], sc.eig_vect[i, 2], item["name"])
for i, vis in enumerate(visualizations):
plt.plot(0, 0, "o", color=colors[i], label=vis)
plt.title(data)
plt.legend(loc=3)
return labels
示例11: concept_clustering
def concept_clustering(data, skill, cluster_number=3, plot=True):
pk, level = data.get_skill_id(skill)
items = data.get_items_df()
items = items[items["skill_lvl_" + str(level)] == pk]
skills = data.get_skills_df()
skill_ids = items[~items["skill_lvl_3"].isnull()]["skill_lvl_3"].unique()
corr = compute_corr(data, merge_skills=True)
corr = pd.DataFrame(corr, index=skill_ids, columns=skill_ids)
print("Corr ({}) contain total {} values and from that {} nans".format(corr.shape, corr.size, corr.isnull().sum().sum()))
corr[corr.isnull()] = 0
try:
sc = SpectralClusterer(corr, kcut=corr.shape[0] * 0.5, mutual=True)
labels = sc.run(cluster_number=cluster_number, KMiter=50, sc_type=2)
except np.linalg.linalg.LinAlgError:
sc = SpectralClusterer(corr, kcut=corr.shape[0] * 0.5, mutual=False)
labels = sc.run(cluster_number=cluster_number, KMiter=50, sc_type=2)
if plot:
colors = "rgbyk"
for i, p in enumerate(corr.columns):
skill = skills.loc[int(p)]
plt.plot(sc.eig_vect[i, 1], sc.eig_vect[i, 2], "o", color=colors[labels[i]])
plt.text(sc.eig_vect[i, 1], sc.eig_vect[i, 2], skill["name"])
plt.title(data)
return labels
示例12: test_fit_gaussian_image_l0
def test_fit_gaussian_image_l0(self):
import matplotlib.pylab as plt
from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset
d1 = ap.catools.caget('LTB-BI:BD1{VF1}Img1:ArrayData')
self.assertEqual(len(d1), 1220*1620)
d2 = np.reshape(d1, (1220, 1620))
params = ap.fitGaussianImage(d2)
fit = self._gaussian(*params)
plt.clf()
extent=(500, 1620, 400, 1220)
#plt.contour(fit(*np.indices(d2.shape)), cmap=plt.cm.copper)
plt.imshow(d2, interpolation="nearest", cmap=plt.cm.bwr)
ax = plt.gca()
ax.set_xlim(750, 850)
ax.set_ylim(550, 650)
(height, y, x, width_y, width_x) = params
#axins = zoomed_inset_axes(ax, 6, loc=1)
#axins.contour(fit(*np.indices(d2.shape)), cmap=plt.cm.cool)
#axins.set_xlim(759, 859)
#axins.set_ylim(559, 660)
#mark_inset(ax, axins, loc1=2, loc2=4, fc='none', ec='0.5')
plt.text(0.95, 0.05, """
x : %.1f
y : %.1f
width_x : %.1f
width_y : %.1f""" %(x, y, width_x, width_y),
fontsize=16, horizontalalignment='right',
verticalalignment='bottom', transform=ax.transAxes)
plt.savefig(figname("test2.png"))
示例13: plot_uv
def plot_uv(self):
""" Plot UV points. Just because its easy. """
self.current_plot = 'uv'
self.ax_zoomed = False
uu = self.uv.d_uv_data['UU']*1e6
vv = self.uv.d_uv_data['VV']*1e6
xx = self.uv.d_array_geometry['STABXYZ'][:,0]
yy = self.uv.d_array_geometry['STABXYZ'][:,1]
pmax, pmin = np.max([uu, vv])*1.1, np.min([uu,vv])*1.1
fig = self.sp_fig
plt.subplot(121, aspect='equal')
ax = plt.plot(xx, yy, 'bo')
for i in range(len(xx)):
plt.text(xx[i], yy[i], self.uv.d_array_geometry['ANNAME'][i].strip('Stand').strip('Tile'))
plt.title("Antenna positions")
plt.xlabel("X [m]")
plt.ylabel("Y [m]")
plt.subplot(122, aspect='equal')
ax = plt.plot(uu, vv, 'b.')
plt.title("UV data")
plt.xlabel("UU [$\\mu s$]")
plt.ylabel("VV [$\\mu s$]")
plt.xlim(pmin, pmax)
plt.ylim(pmin, pmax)
return fig, ax
示例14: lattice_plot
def lattice_plot(component_list, file_path):
"""
Creates a lattice style plot of all graph components
"""
graph_fig = plt.figure(figsize=(20, 10)) # Create figure
# Set the number of rows in the plot based on an odd or
# even number of components
num_components = len(component_list)
if num_components % 2 > 0:
num_cols = (num_components / 2) + 1
else:
num_cols = num_components / 2
# Plot subgraphs, with centrality annotation
plot_count = 1
for G in component_list:
# Find actor in each component with highest degree
in_cent = nx.degree(G)
in_cent = [(b, a) for (a, b) in in_cent.items()]
in_cent.sort()
in_cent.reverse()
high_in = in_cent[0][1]
# Plot with annotation
plt.subplot(2, num_cols, plot_count)
nx.draw_spring(G, node_size=35, with_labels=False)
plt.text(0, -0.1, "Highest degree: " + high_in, color="darkgreen")
plot_count += 1
plt.savefig(file_path)
示例15: plot_prof
def plot_prof(obj):
'''Function that plots a vertical profile of scattering from
TOC to BOC.
Input: rt_layer instance object.
Output: plot of scattering.
'''
I = obj.Inodes[:,1,:] \
/ -obj.mu_s
y = np.linspace(obj.Lc, 0., obj.K+1)
x = obj.views*180./np.pi
xm = np.array([])
for i in np.arange(0,len(x)-1):
nx = x[i] + (x[i+1]-x[i])/2.
xm = np.append(xm,nx)
xm = np.insert(xm,0,0.)
xm = np.append(xm,180.)
xx, yy = np.meshgrid(xm, y)
plt.pcolormesh(xx,yy,I)
plt.colorbar()
plt.title('Canopy Fluxes')
plt.xlabel('Exit Zenith Angle')
plt.ylabel('Cumulative LAI (0=soil)')
plt.arrow(135.,3.5,0.,-3.,head_width=5.,head_length=.2,\
fc='k',ec='k')
plt.text(140.,2.5,'Downwelling Flux',rotation=90)
plt.arrow(45.,.5,0.,3.,head_width=5.,head_length=.2,\
fc='k',ec='k')
plt.text(35.,2.5,'Upwelling Flux',rotation=270)
plt.show()