当前位置: 首页>>代码示例>>Python>>正文


Python pylab.suptitle函数代码示例

本文整理汇总了Python中matplotlib.pylab.suptitle函数的典型用法代码示例。如果您正苦于以下问题:Python suptitle函数的具体用法?Python suptitle怎么用?Python suptitle使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了suptitle函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: chooseDegree

def chooseDegree(npts, mindegree=0, maxdegree=20, filename=None):
    """Gets noisy data, uses cross validation to estimate error, and fits new data with best model."""
    x, y = bv.noisyData(npts)
    degrees = numpy.arange(mindegree,maxdegree+1)
    errs = numpy.zeros_like(degrees,dtype=numpy.float)
    for i,d in enumerate(degrees):
        errs[i] = estimateError(x, y, d)

    plt.subplot(1,2,1)
    plt.plot(degrees,errs,'bo-')
    plt.xlabel("Degree")
    plt.ylabel("CV Error")

    besti = numpy.argmin(errs)
    bestdegree = degrees[besti]

    plt.subplot(1,2,2)
    x2, y2 = bv.noisyData(npts)
    plt.plot(x2,y2,'ro')
    xs = numpy.linspace(min(x),max(x),150)
    fitf = numpy.poly1d(numpy.polyfit(x2,y2,bestdegree))
    plt.plot(xs,fitf(xs),'g-',lw=2)
    plt.xlim((bv.MIN,bv.MAX))
    plt.ylim((-2.,2.))
    plt.suptitle('Selected Degree '+str(bestdegree))
    bv.outputPlot(filename)
开发者ID:ljdursi,项目名称:ML-for-scientists,代码行数:26,代码来源:crossvalidation.py

示例2: graphical_analysis

def graphical_analysis(strace, comment=None, cutoff=50, threshold=-45, bins=50):
# -----------------------------------------------------------------------------
    """
    Graphical report of the trace.
    strace - voltage trace of class SimpleTrace
    cutoff - first part of the trace cut away from the analysis (in ms)
    threshold - cutting voltage
    """
    import matplotlib.pylab as pyl
    voltage = strace._data
    time = np.arange(len(voltage))*strace._dt
    pyl.figure()
    rate, mean, var, skew, kurt = full_analysis(strace, cutoff, threshold)
    if comment:
        pyl.suptitle(comment)
    sp1 = pyl.subplot(2,1,1)
    sp1.plot(time,voltage)
    sp1.set_title("Spike rate = {0}".format(rate))
    sp1.set_xlabel("time [ms]")
    sp1.set_ylabel("V [mV]")
    sp2 = pyl.subplot(2,1,2)
    cut_trace = voltage[int(cutoff/strace._dt):]
    data = cut_trace[cut_trace<threshold]
    sp2.hist(data, bins=bins, histtype="stepfilled", normed=1)
    xlim = sp2.get_xlim()
    pyl.text(xlim[0]+0.7*(xlim[1]-xlim[0]), 0.6,
             "mean = {0}\nvar={1}\nskew={2}\nkurt={3}".format(mean, var, skew, kurt))
    sp2.plot([mean, mean],[0,1],"r")
    sp2.plot([mean-np.sqrt(var)/2., mean+np.sqrt(var)/2.],[0.1,0.1], "r")
    sp2.set_xlabel("V [mV]")
    sp2.set_ylabel("normalized distribution")
开发者ID:mpelko,项目名称:neurovivo,代码行数:31,代码来源:trace_analysis.py

示例3: plot

 def plot(self,typ='s3',titre='titre',log=False,stem=True,subp=True):
     """
     """
     fa = np.linspace(self.Br.fmin,self.Br.fmax,self.Br.Nf)
     st = titre+'  shape : '+typ
     plt.suptitle(st,fontsize=14)
     if subp:
         plt.subplot(221)
         titre = '$\sum_f \sum_m |Br_{l}^{(m)}(f)|$'
         self.Br.plot(typ=typ,title=titre, yl=True,color='r',stem=stem,log=log)
     else:
         self.Br.plot(typ=typ,color='r',stem=stem,log=log)
     if subp:
         plt.subplot(222)
         titre = '$\sum_f \sum_m |Bi_{l}^{(m)}(f)|$'
         self.Bi.plot(typ=typ,title=titrei,color='m',stem=stem,log=log)
     else:
         self.Bi.plot(typ=typ,color='m',stem=stem,log=log)
     if subp:
         plt.subplot(223)
         titre = '$\sum_f \sum_m |Cr_{l}^{(m)}(f)|$'
         self.Cr.plot(typ=typ,title=titre, xl=True, yl=True,color='b',stem=stem,log=log)
     else:
         self.Cr.plot(typ=typ,color='b',stem=stem,log=log)
     if subp:
         plt.subplot(224)
         titre = '$\sum_f \sum_m |Ci_{l}^{(m)}(f)|$'
         self.Ci.plot(typ=typ, title = titre, xl=True,color='c',stem=stem,log=log)
     else:
         self.Ci.plot(typ=typ,xl=True,yl=True,color='c',stem=stem,log=log)
     if not subp:
         plt.legend(('$\sum_f \sum_m |Br_{l}^{(m)}(f)|$',
                     '$\sum_f \sum_m |Bi_{l}^{(m)}(f)|$',
                     '$\sum_f \sum_m |Cr_{l}^{(m)}(f)|$',
                     '$\sum_f \sum_m |Ci_{l}^{(m)}(f)|$'))
开发者ID:mlaaraie,项目名称:pylayers,代码行数:35,代码来源:spharm.py

示例4: plotFittingResults

    def plotFittingResults(self):
        """
        Plot results of Rmax optimization procedure and best fit of the experimental data
        """
        _listFitQ = [tmp.getValue() for tmp in self.getDataOutput().getScatteringFitQ()]
        _listFitValues = [tmp.getValue() for tmp in self.getDataOutput().getScatteringFitValues()]
        _listExpQ = [tmp.getValue() for tmp in self.getDataInput().getExperimentalDataQ()]
        _listExpValues = [tmp.getValue() for tmp in self.getDataInput().getExperimentalDataValues()]

        #_listExpStdDev = None
        #if self.getDataInput().getExperimentalDataStdDev():
        #    _listExpStdDev = [tmp.getValue() for tmp in self.getDataInput().getExperimentalDataStdDev()]
        #if _listExpStdDev:
        #    pylab.errorbar(_listExpQ, _listExpValues, yerr=_listExpStdDev, linestyle='None', marker='o', markersize=1,  label="Experimental Data")
        #    pylab.gca().set_yscale("log", nonposy='clip')
        #else:         
        #    pylab.semilogy(_listExpQ, _listExpValues, linestyle='None', marker='o', markersize=5,  label="Experimental Data")

        pylab.semilogy(_listExpQ, _listExpValues, linestyle='None', marker='o', markersize=5, label="Experimental Data")
        pylab.semilogy(_listFitQ, _listFitValues, label="Fitting curve")
        pylab.xlabel('q')
        pylab.ylabel('I(q)')
        pylab.suptitle("RMax : %3.2f. Fit quality : %1.3f" % (self.getDataInput().getRMax().getValue(), self.getDataOutput().getFitQuality().getValue()))
        pylab.legend()
        pylab.savefig(os.path.join(self.getWorkingDirectory(), "gnomFittingResults.png"))
        pylab.clf()
开发者ID:antolinos,项目名称:edna,代码行数:26,代码来源:EDPluginExecGnomv0_1.py

示例5: visualization2

    def visualization2(self, sp_to_vis=None):
        if sp_to_vis:
            species_ready = list(set(sp_to_vis).intersection(self.all_sp_signatures.keys()))
        else:
            raise Exception('list of driver species must be defined')

        if not species_ready:
            raise Exception('None of the input species is a driver')

        for sp in species_ready:
            # Setting up figure
            plt.figure()
            plt.subplot(313)

            mon_val = OrderedDict()
            signature = self.all_sp_signatures[sp]
            for idx, mon in enumerate(list(set(signature))):
                if mon[0] == 'C':
                    mon_val[self.all_comb[sp][mon] + (-1,)] = idx
                else:
                    mon_val[self.all_comb[sp][mon]] = idx

            mon_rep = [0] * len(signature)
            for i, m in enumerate(signature):
                if m[0] == 'C':
                    mon_rep[i] = mon_val[self.all_comb[sp][m] + (-1,)]
                else:
                    mon_rep[i] = mon_val[self.all_comb[sp][m]]
            # mon_rep = [mon_val[self.all_comb[sp][m]] for m in signature]

            y_pos = numpy.arange(len(mon_val.keys()))
            plt.scatter(self.tspan[1:], mon_rep)
            plt.yticks(y_pos, mon_val.keys())
            plt.ylabel('Monomials', fontsize=16)
            plt.xlabel('Time(s)', fontsize=16)
            plt.xlim(0, self.tspan[-1])
            plt.ylim(0, max(y_pos))

            plt.subplot(312)

            for name in self.model.odes[sp].as_coefficients_dict():
                mon = name
                mon = mon.subs(self.param_values)
                var_to_study = [atom for atom in mon.atoms(sympy.Symbol)]
                arg_f1 = [numpy.maximum(self.mach_eps, self.y[str(va)][1:]) for va in var_to_study]
                f1 = sympy.lambdify(var_to_study, mon)
                mon_values = f1(*arg_f1)
                mon_name = str(name).partition('__')[2]
                plt.plot(self.tspan[1:], mon_values, label=mon_name)
            plt.ylabel('Rate(m/sec)', fontsize=16)
            plt.legend(bbox_to_anchor=(-0.1, 0.85), loc='upper right', ncol=1)

            plt.subplot(311)
            plt.plot(self.tspan[1:], self.y['__s%d' % sp][1:], label=parse_name(self.model.species[sp]))
            plt.ylabel('Molecules', fontsize=16)
            plt.legend(bbox_to_anchor=(-0.15, 0.85), loc='upper right', ncol=1)
            plt.suptitle('Tropicalization' + ' ' + str(self.model.species[sp]))

            # plt.show()
            plt.savefig('s%d' % sp + '.png', bbox_inches='tight', dpi=400)
开发者ID:LoLab-VU,项目名称:tropical,代码行数:60,代码来源:max_plus.py

示例6: scatter

 def scatter(title, file_name, x_array, y_array, size_array, x_label, \
             y_label, x_range, y_range, print_pdf):
     '''
     Plots the given x value array and y value array with the specified 
     title and saves with the specified file name. The size of points on
     the map are proportional to the values given in size_array. If 
     print_pdf value is 1, the image is also written to pdf file. 
     Otherwise it is only written to png file.
     '''
     rc('text', usetex=True)
     rc('font', family='serif')
     plt.clf() # clear the ploting window, a must.                               
     plt.scatter(x_array, y_array, s =  size_array, c = 'b', marker = 'o', alpha = 0.4)
     if x_label != None:   
         plt.xlabel(x_label)
     if y_label != None:
         plt.ylabel(y_label)                
     plt.axis ([0, x_range, 0, y_range])
     plt.grid(True)
     plt.suptitle(title)
 
     Plotter.print_to_png(plt, file_name)
     
     if print_pdf:
         Plotter.print_to_pdf(plt, file_name)
开发者ID:altay-oz,项目名称:tech_market_simulations,代码行数:25,代码来源:plotter.py

示例7: plot_fcs

def plot_fcs(normed_df, unnormed_df, pair, basename):
    """
    Plot fold changes for normed and unnormed dataframes.

    Parameters:
    -----------
    normed_df: Normalized dataframe of values
    unnormed_df: Unnormalized dataframe of values
    pair: Tuple containing the two columns to use
    to compute fold change. Fold change is first
    sample divided by second.
    """
    if (pair[0] not in normed_df.columns) or \
       (pair[1] not in normed_df.columns):
        raise Exception, "One of the pairs is not in normed df."
    if (pair[0] not in unnormed_df.columns) or \
       (pair[1] not in unnormed_df.columns):
        raise Exception, "One of the pairs is not in unnormed.df"
    normed_fc = \
        np.log2(normed_df[pair[0]]) - np.log2(normed_df[pair[1]])
    unnormed_fc = \
        np.log2(unnormed_df[pair[0]]) - np.log2(unnormed_df[pair[1]])
    fc_df = pandas.DataFrame({"normed_fc": normed_fc,
                              "unnormed_fc": unnormed_fc})
    # Remove nans/infs etc.
    pandas.set_option('use_inf_as_null', True)
    fc_df = fc_df.dropna(how="any", subset=["normed_fc",
                                            "unnormed_fc"])
    plt.figure()
    fc_df.hist(color="k", bins=40)
    plt.suptitle("%s vs. %s" %(pair[0], pair[1]))
    plt.xlabel("Fold change (log2)")
    save_fig(basename)
    pandas.set_option('use_inf_as_null', False)    
开发者ID:brwnj,项目名称:normpy,代码行数:34,代码来源:plot_utils.py

示例8: update

    def update(frame):
        global _counter
        centroid = np.random.uniform(-0.5, 0.5, size=2)
        width = np.random.uniform(0, 0.01)
        length = np.random.uniform(0, 0.03) + width
        angle = np.random.uniform(0, 360)
        intens = np.random.exponential(2) * 50
        model = mock.generate_2d_shower_model(centroid=centroid,
                                              width=width,
                                              length=length,
                                              psi=angle * u.deg)
        image, sig, bg = mock.make_mock_shower_image(geom, model.pdf,
                                                     intensity=intens,
                                                     nsb_level_pe=5000)

        # alternate between cleaned and raw images
        if _counter > 20:
            plt.suptitle("Image Cleaning ON")
            cleanmask = reco.cleaning.tailcuts_clean(geom, image, pedvars=80)
            for ii in range(3):
                reco.cleaning.dilate(geom, cleanmask)
            image[cleanmask == 0] = 0  # zero noise pixels
        if _counter >= 40:
            plt.suptitle("Image Cleaning OFF")
            _counter = 0

        disp.image = image
        disp.set_limits_percent(100)
        _counter += 1
开发者ID:RichardWhite109,项目名称:ctapipe,代码行数:29,代码来源:camdemo.py

示例9: q6

def q6(abreviation):
	'''#Q6: PLOTS polling data for a given state'''
	#get STATE; connect to db
	state = abreviation.upper()
	connection = sqlite3.connect(path+"/poll.db")
	cursor = connection.cursor()
	
	#query db, get names, rankings for Rep, Dem, Ind candidates
	sql_cmd = "SELECT candidate_names.democrat, candidate_names.republican, candidate_names.independent, rankings.day, rankings.dem, rankings.rep, rankings.indep from rankings left join statetable on rankings.state = statetable.fullname\
	 left join candidate_names on statetable.abrev = candidate_names.state where  statetable.abrev = '%s' order by rankings.day ASC" % state
	cursor.execute(sql_cmd)
	dbinfo = cursor.fetchall()

	#'new' is the name of the record array corresponding to the output from the sql query
	new = N.array(dbinfo, dtype= [('demname', '|S25'),('repname', '|S25'),('indname', '|S25'),('day', N.int16), ("dem", N.int16), ("rep", N.int16), ("ind", N.int16)])

	demname= new['demname'][0] #name of democrat
	repname=  new['repname'][0] # name of rep
	indname= new['indname'][0] #" of ind

	# 2 (+1) lines for dem, rep, candiates ind if he has more than 1 point at the first datapoint, indicating there is an independent candidate
	plt.plot(new['day'],new['dem'], color='blue', label='%s' % demname)
	plt.plot(new['day'],new['rep'], color='red', label='%s' % repname)
	if new['ind'][0] > 1:
		plt.plot(new['day'],new['ind'], color='green', label='%s' % indname)
		
	#plot info
	plt.suptitle('Election Polls for the State of %s'%state)
	plt.xlabel('Day of the year')
	plt.ylabel('Points')
	plt.legend()
	plt.show()
开发者ID:rawatenator,项目名称:ay250hw,代码行数:32,代码来源:Hw5.py

示例10: plot_ss_scatter

def plot_ss_scatter(steadies):
    """ Plot scatter plots of steady states
    """

    def do_scatter(i, j, ax):
        """ Draw single scatter plot
        """
        xs, ys = utils.extract(i, j, steadies)
        ax.scatter(xs, ys)

        ax.set_xlabel(r"$S_%d$" % i)
        ax.set_ylabel(r"$S_%d$" % j)

        cc = utils.get_correlation(xs, ys)
        ax.set_title(r"Corr: $%.2f$" % cc)

    dim = steadies.shape[1]
    fig, axarr = plt.subplots(1, int((dim ** 2 - dim) / 2), figsize=(20, 5))

    axc = 0
    for i in range(dim):
        for j in range(dim):
            if i == j:
                break
            do_scatter(i, j, axarr[axc])
            axc += 1

    plt.suptitle("Correlation overview")

    plt.tight_layout()
    save_figure("images/correlation_scatter.pdf", bbox_inches="tight")
    plt.close()
开发者ID:kpj,项目名称:SDEMotif,代码行数:32,代码来源:plotter.py

示例11: plotErrorAndOrder

def plotErrorAndOrder(schemesName, spaceErrorList,temporalErrorList,
                      spaceOrderList, temporalOrderList, Ntds):
    legendList = []
    lstyle = ['b', 'r', 'g', 'm']
    fig , axarr = plt.subplots(2, 2, squeeze=False)
    for k, scheme_name in enumerate(schemesName):
        axarr[0][0].plot(np.log10(np.asarray(spaceErrorList[k])),lstyle[k])
        axarr[0][1].plot(np.log10(np.asarray(temporalErrorList[k])),lstyle[k])
        axarr[1][0].plot(spaceOrderList[k],lstyle[k])
        axarr[1][1].plot(temporalOrderList[k],lstyle[k])
        legendList.append(scheme_name)
    plt.suptitle('test_MES_convergence(): Results from convergence test using Method of Exact Solution')

    axarr[1][0].axhline(1.0, xmin=0, xmax=Ntds-2, linestyle=':', color='k')
    axarr[1][0].axhline(2.0, xmin=0, xmax=Ntds-2, linestyle=':', color='k')
    axarr[1][1].axhline(1.0, xmin=0, xmax=Ntds-2, linestyle=':', color='k')
    axarr[1][1].axhline(2.0, xmin=0, xmax=Ntds-2, linestyle=':', color='k')
    axarr[1][0].set_ylim(0, 5)
    axarr[1][1].set_ylim(0, 5)
    axarr[0][0].set_ylabel('rms Error')
    axarr[0][0].set_title('space Error')
    axarr[1][0].set_ylabel('rms Error')
    axarr[0][1].set_title('temporal Error')
    axarr[1][0].set_ylabel('order')
    axarr[1][0].set_title('space order')
    axarr[1][1].set_ylabel('order')
    axarr[1][1].set_title('temporal order')
    axarr[0][1].legend(legendList, frameon=False)
开发者ID:lrhgit,项目名称:tkt4140,代码行数:28,代码来源:Visualization.py

示例12: report

def report(path='history.cpkl', tn=0, sns=True):
    if sns:
        import seaborn as sns
        sns.set_style('whitegrid')
        sns.set_style('whitegrid', {'fontsize': 50})
        sns.set_context('poster')
    with open(path) as f:
        logged_data = pickle.load(f)

    history = util.NestedDict()
    for name, val in logged_data.iteritems():
        history.set_nested(name, val)

    num_subplots = len(history)
    cols = 2  # 2 panels for Objective and Accuracy
    rows = 1

    fig = plt.figure(figsize=(12, 8))
    fig.subplots_adjust(wspace=0.3, hspace=0.2)  # room for labels [Objective, Accuracy]
    colors = [sns.xkcd_rgb['blue'], sns.xkcd_rgb['red']]

    # Here we assume that history is only two levels deep
    for k, (subplot_name, trend_lines) in enumerate(history.iteritems()):
        plt.subplot(rows, cols, k + 1)
        plt.ylabel(subplot_name.capitalize())
        plt.xlabel('Epoch')
        for i, (name, (timestamps, values)) in enumerate(trend_lines.iteritems()):
            plt.plot(timestamps, values, label=name, color=colors[i])
        plt.suptitle('Task number %d' % tn)
        plt.legend(loc='best')

    plt.show()
开发者ID:liangkai,项目名称:question_answering,代码行数:32,代码来源:experiment.py

示例13: plotAstrometry

def plotAstrometry(dist, mag, snr, brightSnr=100,
                   outputPrefix=""):
    """Plot angular distance between matched sources from different exposures.

    Creates a file containing the plot with a filename beginning with `outputPrefix`.

    Parameters
    ----------
    dist : list or numpy.array
        Separation from reference [mas]
    mag : list or numpy.array
        Mean magnitude of PSF flux
    snr : list or numpy.array
        Median SNR of PSF flux
    brightSnr : float, optional
        Minimum SNR for a star to be considered "bright".
    outputPrefix : str, optional
        Prefix to use for filename of plot file.  Will also be used in plot titles.
        E.g., outputPrefix='Cfht_output_r_' will result in a file named
           'Cfht_output_r_check_astrometry.png'
    """
    bright, = np.where(np.asarray(snr) > brightSnr)

    numMatched = len(dist)
    dist_median = np.median(dist)
    bright_dist_median = np.median(np.asarray(dist)[bright])

    fig, ax = plt.subplots(ncols=2, nrows=1, figsize=(18, 12))

    ax[0].hist(dist, bins=100, color=color['all'],
               histtype='stepfilled', orientation='horizontal')
    ax[0].hist(np.asarray(dist)[bright], bins=100, color=color['bright'],
               histtype='stepfilled', orientation='horizontal',
               label='SNR > %.0f' % brightSnr)

    ax[0].set_ylim([0., 500.])
    ax[0].set_ylabel("Distance [mas]")
    ax[0].set_title("Median : %.1f, %.1f mas" %
                    (bright_dist_median, dist_median),
                    x=0.55, y=0.88)
    plotOutlinedLinesHorizontal(ax[0], dist_median, bright_dist_median)

    ax[1].scatter(snr, dist, s=10, color=color['all'], label='All')
    ax[1].scatter(np.asarray(snr)[bright], np.asarray(dist)[bright], s=10,
                  color=color['bright'],
                  label='SNR > %.0f' % brightSnr)
    ax[1].set_xlabel("SNR")
    ax[1].set_xscale("log")
    ax[1].set_ylim([0., 500.])
    ax[1].set_title("# of matches : %d, %d" % (len(bright), numMatched))
    ax[1].legend(loc='upper left')
    ax[1].axvline(brightSnr, color='red', linewidth=4, linestyle='dashed')
    plotOutlinedLinesHorizontal(ax[1], dist_median, bright_dist_median)

    plt.suptitle("Astrometry Check : %s" % outputPrefix.rstrip('_'), fontsize=30)
    plotPath = outputPrefix+"check_astrometry.png"
    plt.savefig(plotPath, format="png")
    plt.close(fig)
开发者ID:PaulPrice,项目名称:validate_drp,代码行数:58,代码来源:plot.py

示例14: plot_generated_toy_batch

def plot_generated_toy_batch(X_real, generator_model, discriminator_model, noise_dim, gen_iter, noise_scale=0.5):

    # Generate images
    X_gen = sample_noise(noise_scale, 10000, noise_dim)
    X_gen = generator_model.predict(X_gen)

    # Get some toy data to plot KDE of real data
    data = load_toy(pts_per_mixture=200)
    x = data[:, 0]
    y = data[:, 1]
    xmin, xmax = -1.5, 1.5
    ymin, ymax = -1.5, 1.5

    # Peform the kernel density estimate
    xx, yy = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
    positions = np.vstack([xx.ravel(), yy.ravel()])
    values = np.vstack([x, y])
    kernel = stats.gaussian_kde(values)
    f = np.reshape(kernel(positions).T, xx.shape)

    # Plot the contour
    fig = plt.figure(figsize=(10,10))
    plt.suptitle("Generator iteration %s" % gen_iter, fontweight="bold", fontsize=22)
    ax = fig.gca()
    ax.contourf(xx, yy, f, cmap='Blues', vmin=np.percentile(f,80), vmax=np.max(f), levels=np.linspace(0.25, 0.85, 30))

    # Also plot the contour of the discriminator
    delta = 0.025
    xmin, xmax = -1.5, 1.5
    ymin, ymax = -1.5, 1.5
    # Create mesh
    XX, YY = np.meshgrid(np.arange(xmin, xmax, delta), np.arange(ymin, ymax, delta))
    arr_pos = np.vstack((np.ravel(XX), np.ravel(YY))).T
    # Get Z = predictions
    ZZ = discriminator_model.predict(arr_pos)
    ZZ = ZZ.reshape(XX.shape)
    # Plot contour
    ax.contour(XX, YY, ZZ, cmap="Blues", levels=np.linspace(0.25, 0.85, 10))
    dy, dx = np.gradient(ZZ)
    # Add streamlines
    # plt.streamplot(XX, YY, dx, dy, linewidth=0.5, cmap="magma", density=1, arrowsize=1)
    # Scatter generated data
    plt.scatter(X_gen[:1000, 0], X_gen[:1000, 1], s=20, color="coral", marker="o")

    l_gen = plt.Line2D((0,1),(0,0), color='coral', marker='o', linestyle='', markersize=20)
    l_D = plt.Line2D((0,1),(0,0), color='steelblue', linewidth=3)
    l_real = plt.Rectangle((0, 0), 1, 1, fc="steelblue")

    # Create legend from custom artist/label lists
    # bbox_to_anchor = (0.4, 1)
    ax.legend([l_real, l_D, l_gen], ['Real data KDE', 'Discriminator contour',
                                     'Generated data'], fontsize=18, loc="upper left")
    ax.set_xlim(xmin, xmax)
    ax.set_ylim(ymin, ymax + 0.8)
    plt.savefig("../../figures/toy_dataset_iter%s.jpg" % gen_iter)
    plt.clf()
    plt.close()
开发者ID:MiG-Kharkov,项目名称:DeepLearningImplementations,代码行数:57,代码来源:data_utils.py

示例15: plot_contours

def plot_contours(obj, top_bottom=True):
  '''A function that plots the BRF as an azimuthal projection
  with contours over the TOC and soil.
  Input: rt_layers object, top_bottom - True if only TOC plot, False
  if both TOC and soil.
  Output: contour plot of brf.
  '''
  sun = ((np.pi - obj.sun0[0]) * np.cos(obj.sun0[1] + np.pi), \
      (np.pi - obj.sun0[0]) * np.sin(obj.sun0[1] + np.pi))
  theta = obj.views[:,0]
  x = np.cos(obj.views[:,1]) * theta
  y = np.sin(obj.views[:,1]) * theta
  z = obj.I_top_bottom # * -obj.mu_s
  if top_bottom == True:
    if np.max > 1.:
      maxz = np.max(z)
    else:
      maxz = 1.
  else:
    maxz = np.max(z[:obj.n/2])
  minz = 0. #np.min(z)
  space = np.linspace(minz, maxz, 11)
  x = x[:obj.n/2]
  y = y[:obj.n/2]
  zt = z[:obj.n/2]
  zb = z[obj.n/2:]
  fig = plt.figure()
  if top_bottom == True:
    plt.subplot(121)
  plt.plot(sun[0], sun[1], 'ro')
  triang = tri.Triangulation(x, y)
  plt.gca().set_aspect('equal')
  plt.tricontourf(triang, zt, space, vmax=maxz, vmin=minz)
  plt.title('TOC BRF')
  plt.ylabel('Y')
  plt.xlabel('X')
  if top_bottom == True:
    plt.subplot(122)
    plt.plot(sun[0], sun[1], 'ro')
    plt.gca().set_aspect('equal')
    plt.tricontourf(triang, zb, space, vmax=maxz, vmin=minz)
    plt.title('Soil Absorption')
    plt.ylabel('Y')
    plt.xlabel('X')
  s = obj.__repr__()
  if top_bottom == True:
    cbaxes = fig.add_axes([0.11,0.1,0.85,0.05])
    plt.suptitle(s,x=0.5,y=0.93)
    plt.colorbar(orientation='horizontal', ticks=space,\
      cax = cbaxes, format='%.3f')
  else:
    plt.suptitle(s,x=0.5,y=0.13)
    plt.colorbar(orientation='horizontal', ticks=space,\
        format='%.3f')
    #plt.tight_layout()
  plt.show()
开发者ID:jgomezdans,项目名称:radtran,代码行数:56,代码来源:two_angle.py


注:本文中的matplotlib.pylab.suptitle函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。