本文整理汇总了Python中matplotlib.pylab.subplots_adjust函数的典型用法代码示例。如果您正苦于以下问题:Python subplots_adjust函数的具体用法?Python subplots_adjust怎么用?Python subplots_adjust使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了subplots_adjust函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_spectrograms
def plot_spectrograms(bsl,rec,rate,title):
plt.close()
fig, ax = plt.subplots(nrows=9, ncols=2, sharex='col', sharey='row')
plt.subplots_adjust(wspace = .05,hspace = 0.4 )
ny_nfft=1024
i=0
while i<9:
Pxx, freq, bins, im = ax[i,0].specgram(bsl[i],NFFT=ny_nfft,Fs=rate)
ax[i,0].set_ylim([0, 40])
if(i==8):
ax[i,0].set_xlabel("Time, seconds")
ax[i,0].set_ylabel("Freq, Hz")
ax[i,0].set_title(title+' baseline sleep, REM stage, Channel:'+str(i+1))
i=i+1
i=0
while i<9:
Pxx, freq, bins, im = ax[i,1].specgram(rec[i],NFFT=ny_nfft,Fs=rate)
#ax[i,1].ylim(0,40)
ax[i,1].set_ylim([0, 40])
#ax[i,1].set_xlim([0, 10000]) #13000])
if(i==8):
ax[i,1].set_xlabel("Time, seconds")
#ax[i,1].set_ylabel("Freq, Hz")
ax[i,1].set_title(title+' recovery sleep, REM stage, Channel:'+str(i+1))
i=i+1
plt.show()
return
示例2: plot_setup_post
def plot_setup_post(figure_number = None, show = True, save_file = None,
legend = True, legend_location = 0):
"""
Handles post-figure setup, including legends, file saving (save_file is
desired filename), showing the figure, and clearing it.
"""
if figure_number:
pyp.figure(figure_number)
pyp.subplots_adjust(bottom=.5) # adjustment to give more xlabel space
# change limits
# pyp.xlim( xmin = 0, xmax = 10000 )
# pyp.ylim( ymin = 0, ymax = 10000 )
# pyp.ylim( (0,10000) ) # equivalent to the line above
if legend:
pyp.legend(loc = legend_location)
if save_file:
pyp.savefig(save_file)
if show:
pyp.show()
else:
pyp.clf() # clears figure if not plotted
示例3: plot_data
def plot_data(tag):
data_array = tag.references[0]
voltage = np.zeros(data_array.data.shape)
data_array.data.read_direct(voltage)
x_axis = data_array.dimensions[0]
time = x_axis.axis(data_array.data_extent[0])
spike_times = tag.positions[:]
feature_data_array = tag.features[0].data
snippets = tag.features[0].data[:]
single_snippet = tag.retrieve_feature_data(3, 0)[:]
snippet_time_dim = feature_data_array.dimensions[1]
snippet_time = snippet_time_dim.axis(feature_data_array.data_extent[1])
response_axis = plt.subplot2grid((2, 2), (0, 0), rowspan=1, colspan=2)
single_snippet_axis = plt.subplot2grid((2, 2), (1, 0), rowspan=1, colspan=1)
average_snippet_axis = plt.subplot2grid((2, 2), (1, 1), rowspan=1, colspan=1)
response_axis.plot(time, voltage, color="dodgerblue", label=data_array.name)
response_axis.scatter(spike_times, np.ones(spike_times.shape) * np.max(voltage), color="red", label=tag.name)
response_axis.set_xlabel(x_axis.label + ((" [" + x_axis.unit + "]") if x_axis.unit else ""))
response_axis.set_ylabel(data_array.label + ((" [" + data_array.unit + "]") if data_array.unit else ""))
response_axis.set_title(data_array.name)
response_axis.set_xlim(0, np.max(time))
response_axis.set_ylim((1.2 * np.min(voltage), 1.2 * np.max(voltage)))
response_axis.legend()
single_snippet_axis.plot(snippet_time, single_snippet.T, color="red", label=("snippet No 4"))
single_snippet_axis.set_xlabel(
snippet_time_dim.label + ((" [" + snippet_time_dim.unit + "]") if snippet_time_dim.unit else "")
)
single_snippet_axis.set_ylabel(
feature_data_array.label + ((" [" + feature_data_array.unit + "]") if feature_data_array.unit else "")
)
single_snippet_axis.set_title("single stimulus snippet")
single_snippet_axis.set_xlim(np.min(snippet_time), np.max(snippet_time))
single_snippet_axis.set_ylim((1.2 * np.min(snippets[3, :]), 1.2 * np.max(snippets[3, :])))
single_snippet_axis.legend()
mean_snippet = np.mean(snippets, axis=0)
std_snippet = np.std(snippets, axis=0)
average_snippet_axis.fill_between(
snippet_time, mean_snippet + std_snippet, mean_snippet - std_snippet, color="red", alpha=0.5
)
average_snippet_axis.plot(snippet_time, mean_snippet, color="red", label=(feature_data_array.name + str(4)))
average_snippet_axis.set_xlabel(
snippet_time_dim.label + ((" [" + snippet_time_dim.unit + "]") if snippet_time_dim.unit else "")
)
average_snippet_axis.set_ylabel(
feature_data_array.label + ((" [" + feature_data_array.unit + "]") if feature_data_array.unit else "")
)
average_snippet_axis.set_title("spike-triggered average")
average_snippet_axis.set_xlim(np.min(snippet_time), np.max(snippet_time))
average_snippet_axis.set_ylim((1.2 * np.min(mean_snippet - std_snippet), 1.2 * np.max(mean_snippet + std_snippet)))
plt.subplots_adjust(left=0.15, top=0.875, bottom=0.1, right=0.98, hspace=0.35, wspace=0.25)
plt.show()
示例4: doit
def doit():
# test it out
L = 1
R = 10
theta = np.radians(np.arange(0,361))
# draw a circle
plt.plot(R*np.cos(theta), R*np.sin(theta), c="b")
# draw some people
angles = [30, 60, 90, 120, 180, 270, 300]
for l in angles:
center = ( (R + 0.5*L)*np.cos(np.radians(l)),
(R + 0.5*L)*np.sin(np.radians(l)) )
draw_person(center, L, np.radians(l - 90), color="r")
L = 1.1*L
plt.axis("off")
ax = plt.gca()
ax.set_aspect("equal", "datalim")
plt.subplots_adjust(left=0.05, right=0.98, bottom=0.05, top=0.98)
plt.axis([-1.2*R, 1.2*R, -1.2*R, 1.2*R])
f = plt.gcf()
f.set_size_inches(6.0, 6.0)
plt.savefig("test.png")
示例5: plot_time_domain_waveform
def plot_time_domain_waveform(fig, waveform, imag=False, mag=False,
xlim=None, xlabel=r'$tc^3/GM$',
ylabel_pol=r'$h_+ + i h_\times$',
ylabel_amp=r'$A$', ylabel_phase=r'$\Phi$',
pol_legend=True, wave_legend=False):
"""Plot the amplitude, phase, and polarizations of a waveform.
"""
# Polarization plot
axes = fig.add_subplot(311)
t = waveform.time
hcomp = waveform.get_complex()
label = r'$h_+$' if pol_legend else ''
line_list = axes.plot(t, hcomp.real, ls='-', label=label)
color = line_list[0].get_color()
if imag:
label = r'$h_\times$' if pol_legend else ''
axes.plot(t, hcomp.imag, ls='--', c=color, label=label)
if mag:
label = r'$|h_+ + ih_\times|$' if pol_legend else ''
axes.plot(waveform.time, waveform.amp, ls=':', c=color, label=label)
if xlim is not None: axes.set_xlim(xlim)
axes.set_ylabel(ylabel_pol, fontsize=16)
axes.set_xticklabels(axes.get_xticks(), fontsize=14)
axes.set_yticklabels(axes.get_yticks(), fontsize=14)
axes.minorticks_on()
axes.tick_params(which='major', width=2, length=8)
axes.tick_params(which='minor', width=2, length=4)
axes.xaxis.set_major_formatter(NullFormatter()) # get rid of x-axis numbers
axes.legend(fontsize=14, loc='best', ncol=3)
# Amplitude plot
axes = fig.add_subplot(312)
axes.plot(waveform.time, waveform.amp, c=color)
if xlim is not None: axes.set_xlim(xlim)
axes.set_ylabel(ylabel_amp, fontsize=16)
axes.set_xticklabels(axes.get_xticks(), fontsize=14)
axes.set_yticklabels(axes.get_yticks(), fontsize=14)
axes.minorticks_on()
axes.tick_params(which='major', width=2, length=8)
axes.tick_params(which='minor', width=2, length=4)
axes.xaxis.set_major_formatter(NullFormatter()) # get rid of x-axis numbers
# Phase plot
axes = fig.add_subplot(313)
label = wave_legend if wave_legend is not False else ''
axes.plot(waveform.time, waveform.phase, c=color, label=label)
if xlim is not None: axes.set_xlim(xlim)
axes.set_xlabel(xlabel, fontsize=16)
axes.set_ylabel(ylabel_phase, fontsize=16)
axes.set_xticklabels(axes.get_xticks(), fontsize=14)
axes.set_yticklabels(axes.get_yticks(), fontsize=14)
axes.minorticks_on()
axes.tick_params(which='major', width=2, length=8)
axes.tick_params(which='minor', width=2, length=4)
axes.legend(fontsize=14, loc='best', ncol=2)
subplots_adjust(hspace=0.07)
示例6: plot_fits
def plot_fits(direction_rates,fit_curve,title):
"""
This function takes the x-values and the y-values in units of spikes/s
(found in the two columns of direction_rates and fit_curve) and plots the
actual values with circles, and the curves as lines in both linear and
polar plots.
"""
#print direction_rates
# print fit_curve
plt.subplots_adjust(hspace = 0.6)
y_max = np.max(direction_rates[:,1]) + 5
plt.subplot(2,2,3)
plt.axis([0,360,0,y_max])
plt.plot(direction_rates[:,0], direction_rates[:,1],'o')
plt.plot(fit_curve[:,0],fit_curve[:,1], '-')
plt.xlabel("Direction of Motion (degrees)")
plt.ylabel("Firing Rate (spikes/s)")
plt.title(title)
plt.subplot(2,2,4, polar = True)
spikecounts = direction_rates[:,1]
spikecounts2 = np.append(spikecounts, direction_rates[0,1])
r = np.arange(0, 361, 45)*np.pi/180
plt.polar(r, spikecounts2,'o')
plt.polar(fit_curve[:,0]*np.pi/180,fit_curve[:,1],'-', label="Firing Rate (spikes/s)")
plt.title(title)
plt.legend(loc=8)
示例7: plot_transition_ratio
def plot_transition_ratio(df1, df2):
"""
plot stage transitions
df1: normal sleep (df1 = analyse(base))
df2: sleep depravation (df2 = analyse(depr))
"""
N = 5
ind = np.arange(N) # the x locations for the groups
width = 0.2 # he width of the bars
plt.close()
plt.rc('font', family='Arial')
fig, ax = plt.subplots(nrows=6, ncols=6, sharex='col', sharey='row')
fig.suptitle("Comparison of the number of stage transitions (% of total transitions) (origin stage " + u'\u2192' + " dest. stage)", fontsize=20)
plt.subplots_adjust(wspace = 0.2,hspace = 0.4 )
for i in range(0,6): # do not care about stage transitions > 5
for j in range(0,6):
clef = '%t' + str(i) + '-' + str(j)
normal = df1[clef].tolist()
mean = sum(normal) / len(normal)
normal.extend([mean])
rects1 = ax[i,j].bar(ind, normal, width, color='b')
depravation = df2[clef].tolist()
mean = sum(depravation) / len(depravation)
depravation.extend([mean])
rects2 = ax[i,j].bar(ind+width, depravation, width, color='r')
for label in (ax[i,j].get_xticklabels() + ax[i,j].get_yticklabels()):
label.set_fontname('Arial')
label.set_fontsize(8)
ax[i,j].set_title(str(i) + ' ' + u'\u2192' + ' ' + str(j))
ax[i,j].set_xticks(ind+width)
ax[i,j].set_xticklabels( ('1', '2', '3', '4', 'Avg') )
ax[i,j].set_yticks(np.arange(0, 6, 2))
ax[i,j].set_ylim([0,6])
fig.legend( (rects1[0], rects2[0]), ('Baseline', 'Recovery'), loc = 'lower right', fontsize=10)
示例8: plot_ratio_cormats
def plot_ratio_cormats():
nprops = 19
cormat_yn = N.loadtxt("cormat_to_do_pca.dat")
cormat_jc = N.loadtxt("corrcoeff_jc.dat", usecols=[2])
cormat_jc = cormat_jc.reshape(nprops, nprops)
rat = cormat_yn/cormat_jc
fig = plt.figure(1)
plt.clf()
plt.subplots_adjust(hspace=0.3, wspace=0.3)
fontsize=8
for ip in xrange(nprops):
ax = fig.add_subplot(4, 5, ip+1)
ax.plot(N.arange(nprops), rat[ip, :], 'ro', ms=2.5)
ax.xaxis.set_major_locator(plt_ticker.MaxNLocator(4))
ax.yaxis.set_major_locator(plt_ticker.MaxNLocator(4))
for tick in ax.xaxis.get_major_ticks():
tick.label1.set_fontsize(fontsize)
for tick in ax.yaxis.get_major_ticks():
tick.label1.set_fontsize(fontsize)
ii = N.where(N.abs(rat[ip, :]-1.) > 0.01)[0]
print "-"*10
print "{:d}: {:}".format(ip, ii)
print cormat_yn[ip, ii]
print cormat_jc[ip, ii]
示例9: SVD_plot
def SVD_plot(SVStreams, SValues, stachans, title=False):
r"""Function to plot the singular vectors from the clustering routines, one\
plot for each stachan
:type SVStreams: list of :class:Obspy.Stream
:param SVStreams: See clustering.SVD_2_Stream - will assume these are\
ordered by power, e.g. first singular vector in the first stream
:type SValues: list of float
:param SValues: List of the singular values corresponding to the SVStreams
:type stachans: list
:param stachans: List of station.channel
"""
for stachan in stachans:
print(stachan)
plot_traces = [SVStream.select(station=stachan.split('.')[0],
channel=stachan.split('.')[1])[0]
for SVStream in SVStreams]
fig, axes = plt.subplots(len(plot_traces), 1, sharex=True)
axes = axes.ravel()
for i, tr in enumerate(plot_traces):
y = tr.data
x = np.linspace(0, len(y) * tr.stats.delta, len(y))
axes[i].plot(x, y, 'k', linewidth=1.1)
ylab = 'SV '+str(i+1)+'='+str(round(SValues[i] / len(SValues), 2))
axes[i].set_ylabel(ylab, rotation=0)
axes[i].yaxis.set_ticks([])
print(i)
axes[-1].set_xlabel('Time (s)')
plt.subplots_adjust(hspace=0)
if title:
axes[0].set_title(title)
else:
axes[0].set_title(stachan)
plt.show()
return
示例10: draw
def draw(self, description=None, ofile="test.png"):
plt.clf()
for f in self.funcs:
f()
plt.axis("off")
ax = plt.gca()
ax.set_aspect("equal", "datalim")
f = plt.gcf()
f.set_size_inches(12.8, 7.2)
if description is not None:
plt.text(0.025, 0.05, description, transform=f.transFigure)
if self.xlim is not None:
plt.xlim(*self.xlim)
if self.ylim is not None:
plt.ylim(*self.ylim)
plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
# dpi = 100 for 720p, 150 for 1080p
plt.savefig(ofile, dpi=150)
示例11: display_collision3D
def display_collision3D(collision):
jets,muons,electrons,photons,met = collision
lines = draw_beams()
pmom = np.array(jets).transpose()[1:4].transpose()
origin = np.zeros((len(jets),3))
lines += draw_jet3D(origin=origin,pmom=pmom)
pmom = np.array(muons).transpose()[1:4].transpose()
origin = np.zeros((len(muons),3))
lines += draw_muon3D(origin=origin,pmom=pmom)
pmom = np.array(electrons).transpose()[1:4].transpose()
origin = np.zeros((len(electrons),3))
lines += draw_electron3D(origin=origin,pmom=pmom)
pmom = np.array(photons).transpose()[1:4].transpose()
origin = np.zeros((len(photons),3))
lines += draw_photon3D(origin=origin,pmom=pmom)
fig = plt.figure(figsize=(6,4),dpi=100)
ax = fig.add_subplot(1,1,1)
ax = fig.gca(projection='3d')
plt.subplots_adjust(top=0.98,bottom=0.02,right=0.98,left=0.02)
for l in lines:
ax.add_line(l)
ax.set_xlim(-200,200)
ax.set_ylim(-200,200)
ax.set_zlim(-200,200)
示例12: trace_plot
def trace_plot(data, ylim):
clf()
plt.subplots_adjust(left=0.15);
plt.subplot(411)
plt.plot(np.arange(0,30000*180)/30000., data[0][:30000*3*60])
plt.xticks(alpha = 0)
plt.yticks(fontsize = 'large')
plt.ylabel('Voltage (mV)', size = 'x-large')
plt.ylim(ylim)
plt.subplot(412)
plt.plot(np.arange(0,30000*180)/30000.,data[1][:30000*3*60])
plt.yticks(alpha = 0)
plt.xticks(alpha = 0)
plt.ylim(ylim)
plt.subplot(413)
plt.plot(np.arange(0,30000*180)/30000.,data[2][:30000*3*60])
plt.xticks(alpha = 0)
plt.yticks(alpha = 0)
plt.ylim(ylim)
plt.subplot(414)
plt.plot(np.arange(0,30000*180)/30000., data[3][:30000*3*60])
plt.xlabel('Time (s)', size = 'x-large')
plt.xticks(fontsize = 'large')
plt.yticks(alpha = 0)
plt.ylim(ylim)
示例13: plot_scatter
def plot_scatter(self, iclus):
observed = rfn.read_data()
fig = plt.figure(2)
plt.clf()
trueM = observed[iclus*self.nlos, 1]
mass = observed[iclus*self.nlos:(iclus+1)*self.nlos, 2:]
mass, masstype = self.get_valid_array_altogether(mass, trueM)
ii = 0
for iobs in xrange(self.nobs):
for jobs in xrange(iobs+1, self.nobs, 1):
ax = fig.add_subplot(4, 3, ii+1)
ax.plot(mass[:, iobs], mass[:, jobs], 'bo', ms=2.5)
plt.subplots_adjust(**self.adjustparam)
ax.xaxis.set_major_locator(plt_ticker.MaxNLocator(3))
ax.yaxis.set_major_locator(plt_ticker.MaxNLocator(3))
#ax.set_xlabel("%s/<%s>" % (self.obsname[iobs], self.obsname[iobs]))
#ax.set_ylabel("%s/<%s>" % (self.obsname[jobs], self.obsname[jobs]))
fontsize=9
for tick in ax.xaxis.get_major_ticks():
tick.label1.set_fontsize(fontsize)
for tick in ax.yaxis.get_major_ticks():
tick.label1.set_fontsize(fontsize)
ii += 1
print self.obsname[iobs], self.obsname[jobs]
plt.savefig(os.path.join("paper", "figure", "scatter_%s_clus%d.eps" % (masstype, iclus)), orientation='portrait', transparent=True)
示例14: run
def run(self):
lines = open(self.inFilename).readlines()
data = []
for line in lines:
data.append(float(line.strip()))
x = np.asarray(data)
fig = plt.figure(figsize=(7, 3))
ax = fig.add_subplot(111)
plt.subplots_adjust(left = 0.15, bottom = 0.15, wspace = 0)
plt.xlabel(self.options.xlab)
plt.ylabel(self.options.ylab)
if self.options.logy == True:
ax.set_yscale('log')
plt.title(self.options.title)
if self.options.plotType == 'hist':
plt.xlim(0,x.max())
n,bins,patches = plt.hist(x, self.options.bins, histtype='bar',
color=['crimson'],normed=False, alpha=0.85)
else:
plt.xlim(0,x.size)
line, = plt.plot(range(x.size), x, 'r-', label = self.options.label)
if self.options.label:
ax.legend()
plt.savefig(self.outFilename)
示例15: plot_spectrograms
def plot_spectrograms(data, rate, subject, condition):
"""
Creates spectrogram subplots for all 9 channels
"""
fig = plt.figure()
# common title
fname = 'Spectrogram - '+'Subject #'+subject+' '+condition+' Dataset'
fig.suptitle(fname, fontsize=14, fontweight='bold')
# common ylabel
fig.text(0.06, 0.5, 'ylabel',
ha='center', va='center', rotation='vertical',
fontsize=14, fontweight='bold')
# use this to stack EEG, EOG, EMG on top of each other
sub_order = [1,4,7,10,2,5,3,6,9]
for ch in range(0, len(data)):
plt.subplot(4, 3, sub_order[ch])
plt.subplots_adjust(hspace=.6) # adds space between subplots
plt.title(channel_name[ch])
Pxx, freqs, bins, im = plt.specgram(data[ch],NFFT=512,Fs=rate)
plt.ylim(0,70)
plt.xlabel('Time (Seconds)')
plt.ylabel('Frequency (Hz)')
#fig.savefig(fname+'.pdf', format='pdf') buggy resolution problem
return