当前位置: 首页>>代码示例>>Python>>正文


Python pylab.show函数代码示例

本文整理汇总了Python中matplotlib.pylab.show函数的典型用法代码示例。如果您正苦于以下问题:Python show函数的具体用法?Python show怎么用?Python show使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了show函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_cone

def plot_cone():
    '''
    '''
    from base import plot as pf

    c = cone_hc()
    stimulus,  response = c.simulate()

    fig  = plt.figure()
    fig.set_tight_layout(True)
    #ax1 = fig.add_subplot(211)
    ax2 = fig.add_subplot(111)
    pf.AxisFormat()
    #pf.TufteAxis(ax1,  ['left'],  [5,  5])
    pf.TufteAxis(ax2,  ['left',  'bottom'],  [5,  5])

    #ax1.semilogy(stimulus,  'k')
    ax2.plot(response,  'k')
    ax2.plot((stimulus / np.max(stimulus)) * 31, 'k')

    #ax1.set_xlim([0, 2000])
    ax2.set_xlim([0, 3000])
    ax2.set_ylim([30, 40])
    #ax1.set_ylabel('luminance (td)')
    ax2.set_ylabel('normalized response')
    ax2.set_xlabel('time')
    plt.show()
开发者ID:bps10,项目名称:base,代码行数:27,代码来源:hc_widefield.py

示例2: bo_

def bo_(x_obs, y_obs):
    kernel = kernels.Matern() + kernels.WhiteKernel()
    gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=16)
    gp.fit(x_obs, y_obs)

    xs = list(repeat(np.atleast_2d(np.linspace(0, 10, 128)).T, 2))
    x = cartesian_product(*xs)

    a = a_EI(gp, x_obs=x_obs, y_obs=y_obs)

    argmin_a_x = x[np.argmax(a(x))]

    # heavy evaluation
    print("f({})".format(argmin_a_x))
    f_argmin_a_x = f2d(np.atleast_2d(argmin_a_x))


    plot_2d(gp, x_obs, y_obs, argmin_a_x, a, xs)
    plt.show()


    bo_(
        x_obs=np.vstack((x_obs, argmin_a_x)),
        y_obs=np.hstack((y_obs, f_argmin_a_x)),
    )
开发者ID:Jim-Holmstroem,项目名称:bayesian-optimization,代码行数:25,代码来源:poc.py

示例3: display_grid

def display_grid(grid, **kwargs):
    fig = plt.figure()
    plt.axes().set_aspect('equal')

    if kwargs.get('mark_core_cells', True):
        core_cell_coords = grid._cell_nodes[1:-1, 1:-1]
        cellx, celly = core_cell_coords[:, :, 0], core_cell_coords[:, :, 1]
        plt.plot(cellx, celly, '-o', np.transpose(cellx), np.transpose(celly), '-o', color='red')

    if kwargs.get('mark_boundary_cells', True):
        boundary_cell_coords = grid._cell_nodes[0, :], \
                               grid._cell_nodes[-1, :], \
                               grid._cell_nodes[1:-1, 0], \
                               grid._cell_nodes[1:-1, -1]

        for coords in boundary_cell_coords:
            plt.plot(coords[:, 0], coords[:, 1], '-x', color='blue')

    if kwargs.get('show', False):
        plt.show()

    f = BytesIO()
    plt.savefig(f)

    return f
开发者ID:obrienadam,项目名称:latte,代码行数:25,代码来源:viewers.py

示例4: plotConeSpace

def plotConeSpace():
    '''
    '''
    space = colorSpace(fundamental='neitz',
                             LMSpeaks=[559.0, 530.0, 421.0])
    space.plotColorSpace(space.Lnorm, space.Mnorm, space.spectrum)
    plt.show()
开发者ID:bps10,项目名称:color,代码行数:7,代码来源:plot_colorSpace.py

示例5: plot_values

 def plot_values(self, TITLE, SAVE):
     plot(self.list_of_densities, self.list_of_pressures)
     title(TITLE)
     xlabel("Densities")
     ylabel("Pressure")
     savefig(SAVE)
     show()
开发者ID:Schoyen,项目名称:molecular-dynamics-fys3150,代码行数:7,代码来源:PlotPressureNumber.py

示例6: plot_grid_experiment_results

def plot_grid_experiment_results(grid_results, params, metrics):
    global plt
    params = sorted(params)
    grid_params = grid_results.grid_params
    plt.figure(figsize=(8, 6))
    for metric in metrics:
        grid_params_shape = [len(grid_params[k]) for k in sorted(grid_params.keys())]
        params_max_out = [(1 if k in params else 0) for k in sorted(grid_params.keys())]
        results = np.array([e.results.get(metric, 0) for e in grid_results.experiments])
        results = results.reshape(*grid_params_shape)
        for axis, included_in_params in enumerate(params_max_out):
            if not included_in_params:
                results = np.apply_along_axis(np.max, axis, results)

        print results
        params_shape = [len(grid_params[k]) for k in sorted(params)]
        results = results.reshape(*params_shape)

        if len(results.shape) == 1:
            results = results.reshape(-1,1)
        import matplotlib.pylab as plt

        #f.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95)
        plt.imshow(results, interpolation='nearest', cmap=plt.cm.hot)
        plt.title(str(grid_results.name) + " " + metric)

        if len(params) == 2:
            plt.xticks(np.arange(len(grid_params[params[1]])), grid_params[params[1]], rotation=45)
        plt.yticks(np.arange(len(grid_params[params[0]])), grid_params[params[0]])
        plt.colorbar()
        plt.show()
开发者ID:gmum,项目名称:mlls2015,代码行数:31,代码来源:utils.py

示例7: plot_dichromatic_system

def plot_dichromatic_system(hybrid='ls', clip=True):
    '''
    '''
    space = colorSpace(fundamental='neitz', LMSpeaks=[559, 530, 421])
    space.plotColorSpace()
    
    for x in np.arange(0, 1.1, 0.1):
        if hybrid.lower() == 'ls' or hybrid.lower() == 'sl':
            s = x
            m = 0
            l = -(1.0 - x)
        elif hybrid.lower() == 'lm' or hybrid.lower() == 'ml':
            s = 0
            m = x
            l = -(1.0 - x)
        elif hybrid.lower() == 'ms' or hybrid.lower() == 'sm':
            s = x
            m = -(1.0 - x)
            l = 0
        else:
            raise InputError('hybrid must be ls, lm or ms')

        copunct = space.lms_to_rgb([l, m, s])
        neutral_points = space.find_spect_neutral(copunct)
        for neut in neutral_points:
            space.cs_ax.plot([neut[0], copunct[0]], [neut[1], copunct[1]], 
                             '-o', c=(np.abs(l), np.abs(m), np.abs(s)), 
                             markersize=8, linewidth=2)

    if clip is True:                
        space.cs_ax.set_xlim([-0.4, 1.2])
        space.cs_ax.set_ylim([-0.2, 1.2])
    
    plt.show()
开发者ID:bps10,项目名称:color,代码行数:34,代码来源:plot_colorSpace.py

示例8: item_nbr_tendency

def item_nbr_tendency(store_nbr):
    '''
    input : store_nbr
    output : graph representing units groupped by each year, each month
    '''
    store = df_1[df_1['store_nbr'] == store_nbr]

    pivot = store.pivot_table(index=['year','month'],columns='item_nbr',values='units',aggfunc=np.sum)
    zero_index = pivot==0
    pivot = pivot[pivot!=0].dropna(axis=1,how='all')
    pivot[zero_index]=0
    
    
    pivot_2012 = pivot.loc[2012]
    pivot_2013 = pivot.loc[2013]
    pivot_2014 = pivot.loc[2014]
    
    plt.figure(figsize=(12,8))
    plt.subplot(131)
    sns.heatmap(pivot_2012,cmap="YlGnBu", annot = True, fmt = '.0f')
    plt.subplot(132)
    sns.heatmap(pivot_2013,cmap="YlGnBu", annot = True, fmt = '.0f')
    plt.subplot(133)
    sns.heatmap(pivot_2014,cmap="YlGnBu", annot = True, fmt = '.0f')
    plt.show()
开发者ID:atyams,项目名称:kaggle-walmart-sales-in-stormy-weather,代码行数:25,代码来源:jw_package.py

示例9: test_params

def test_params():
    #x = np.linspace(.8, 1.2, 1e2)
    x = np.linspace(-.2, .2, 1e2)

    num = 5
    range_a = np.linspace(1, 2, num)
    range_b = np.linspace(1., 1.1, num)
    range_p = np.linspace(.1, .4, num)
    range_q = np.linspace(.1, .4, num)
    range_T = np.linspace(30, 365, num) / 365

    args_def = {'a' : range_a.mean(), 'b' : range_b.mean(),
                'p' : range_p.mean(), 'q' : range_q.mean(),
                'T' : range_T.mean()}

    ranges = {'a' : range_a, 'b' : range_b,
              'p' : range_p, 'q' : range_q, 'T' : range_T}

    fig, axes = plt.subplots(nrows = len(ranges), figsize = (6,12))
    for name, a in zip(sorted(ranges.keys()), axes):
        args = args_def.copy()
        for pi in ranges[name]:
            args[name] = pi
            f = GB2(**args).density(x)
            a.plot(x, f, label = pi)
        a.legend(title = name)
    plt.show()
开发者ID:khrapovs,项目名称:rndensity,代码行数:27,代码来源:beta_distribution.py

示例10: plot_q

def plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):
    """
    Plot a radiallysymmetric Q model.

    plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):

    r_min=minimum radius [km], r_max=maximum radius [km], dr=radius
    increment [km]

    Currently available models (model): cem, prem, ql6
    """
    import matplotlib.pylab as plt

    r = np.arange(r_min, r_max + dr, dr)
    q = np.zeros(len(r))

    for k in range(len(r)):

        if model == 'cem':
            q[k] = q_cem(r[k])
        elif model == 'ql6':
            q[k] = q_ql6(r[k])
        elif model == 'prem':
            q[k] = q_prem(r[k])

    plt.plot(r, q, 'k')
    plt.xlim((0.0, r_max))
    plt.xlabel('radius [km]')
    plt.ylabel('Q')
    plt.show()
开发者ID:krischer,项目名称:ses3d_ctrl,代码行数:30,代码来源:Q_models.py

示例11: item_nbr_tendency_finely

def item_nbr_tendency_finely(store_nbr, year, month_start=-1, month_end=-1, graph=True):
    '''
    input
        1. store_nbr = 스토어 번호
        2. year = 연도
        3. month_start = 시작달
        4. month_start = 끝달
        5. graph = 위의 정보에 대한 item_nbr 그래프 출력여부
    
    output
        1. store_nbr, year, month로 filtering한 item_nbr의 pivot 테이블
    '''
    store = df_1[(df_1['store_nbr'] == store_nbr) &
                 (df_1['year'] == year)]

    if month_start != -1:
        if month_end == -1:
            month_end = month_start + 1
        store = store[(month_start <= store['month']) & (store['month'] < month_end)]

    pivot = store.pivot_table(index='item_nbr',
                              columns='date',
                              values='units',
                              aggfunc=np.sum)

    zero_index = pivot == 0
    pivot = pivot[pivot != 0].dropna(axis=0, how='all')
    pivot[zero_index] = 0

    if graph:
        plt.figure(figsize=(12, 8))
        sns.heatmap(pivot, cmap="YlGnBu", annot=True, fmt='.0f')
        plt.show()

    return pivot
开发者ID:atyams,项目名称:kaggle-walmart-sales-in-stormy-weather,代码行数:35,代码来源:jw_package.py

示例12: plotting

def plotting():
    # plt.ion()
    countries = ['France', 'Spain', 'Sweden', 'Germany', 'Finland', 'Poland',
                 'Italy',
                 'United Kingdom', 'Romania', 'Greece', 'Bulgaria', 'Hungary',
                 'Portugal', 'Austria', 'Czech Republic', 'Ireland',
                 'Lithuania', 'Latvia',
                 'Croatia', 'Slovakia', 'Estonia', 'Denmark', 'Netherlands',
                 'Belgium']
    extensions = [547030, 504782, 450295, 357022, 338145, 312685, 301340,
                  243610, 238391,
                  131940, 110879, 93028, 92090, 83871, 78867, 70273, 65300,
                  64589, 56594,
                  49035, 45228, 43094, 41543, 30528]
    populations = [63.8, 47, 9.55, 81.8, 5.42, 38.3, 61.1, 63.2, 21.3, 11.4,
                   7.35,
                   9.93, 10.7, 8.44, 10.6, 4.63, 3.28, 2.23, 4.38, 5.49, 1.34,
                   5.61,
                   16.8, 10.8]
    life_expectancies = [81.8, 82.1, 81.8, 80.7, 80.5, 76.4, 82.4, 80.5, 73.8,
                         80.8, 73.5,
                         74.6, 79.9, 81.1, 77.7, 80.7, 72.1, 72.2, 77, 75.4,
                         74.4, 79.4, 81, 80.5]
    data = {'extension': pd.Series(extensions, index=countries),
            'population': pd.Series(populations, index=countries),
            'life expectancy': pd.Series(life_expectancies, index=countries)}

    df = pd.DataFrame(data)
    print(df)
    df = df.sort('life expectancy')
    fig, axes = plt.subplots(nrows=3, ncols=1)
    for i, c in enumerate(df.columns):
        df[c].plot(kind='bar', ax=axes[i], figsize=(12, 10), title=c)
    plt.show()
开发者ID:laurogama,项目名称:mlpython,代码行数:34,代码来源:main.py

示例13: flipPlot

def flipPlot(minExp, maxExp):
    """假定minEXPy和maxExp是正整数且minExp<maxExp
    绘制出2**minExp到2**maxExp次抛硬币的结果
    """
    ratios = []
    diffs = []
    aAxis = []
    for i in range(minExp, maxExp+1):
        aAxis.append(2**i)
    for numFlips in aAxis:
        numHeads = 0
        for n in range(numFlips):
            if random.random() < 0.5:
                numHeads += 1
        numTails = numFlips - numHeads
        ratios.append(numHeads/numFlips)
        diffs.append(abs(numHeads-numTails))
    plt.figure()
    ax1 = plt.subplot(121)
    plt.title("Difference Between Heads and Tails")
    plt.xlabel('Number of Flips')
    plt.ylabel('Abs(#Heads - #Tails)')
    ax1.semilogx(aAxis, diffs, 'bo')
    ax2 = plt.subplot(122)
    plt.title("Heads/Tails Ratios")
    plt.xlabel('Number of Flips')
    plt.ylabel("#Heads/#Tails")
    ax2.semilogx(aAxis, ratios, 'bo')
    plt.show()
开发者ID:xiaohu2015,项目名称:ProgrammingPython_notes,代码行数:29,代码来源:chapter12.py

示例14: test_likelihood_evaluator3

def test_likelihood_evaluator3():
    
    tr = template.TemplateRenderCircleBorder()
    tr.set_params(14, 6, 4)

    t1 = tr.render(0, np.pi/2)
    img = np.zeros((240, 320), dtype=np.uint8)

    env = util.Environmentz((1.5, 2.0), (240, 320))
    
    le2 = likelihood.LikelihoodEvaluator3(env, tr)

    img[(120-t1.shape[0]/2):(120+t1.shape[0]/2), 
        (160-t1.shape[1]/2):(160+t1.shape[1]/2)] += t1 *255
    pylab.subplot(1, 2, 1)
    pylab.imshow(img, interpolation='nearest', cmap=pylab.cm.gray)

    state = np.zeros(1, dtype=util.DTYPE_STATE)

    xvals = np.linspace(0, 2.,  100)
    yvals = np.linspace(0, 1.5, 100)
    res = np.zeros((len(yvals), len(xvals)), dtype=np.float32)
    for yi, y in enumerate(yvals):
        for xi, x in enumerate(xvals):
            state[0]['x'] = x
            state[0]['y'] = y
            state[0]['theta'] = np.pi / 2. 
            res[yi, xi] =     le2.score_state(state, img)
    pylab.subplot(1, 2, 2)
    pylab.imshow(res)
    pylab.colorbar()
    pylab.show()
开发者ID:ericmjonas,项目名称:franktrack,代码行数:32,代码来源:test_likelihood.py

示例15: plotGetSelection

def plotGetSelection():
    """ Get data range from selected pen.
    """
    selData = []
    if len(ds.EpmDatasetAnalysisPens.SelectedPens) != 1:
        sr.msgBox('EPM Python Plugin - Demo Tools', 'Please select a single pen before applying this function!', 'Warning')
        return 0
    epmData = ds.EpmDatasetAnalysisPens.SelectedPens[0].values
    y = epmData['Value'].copy()
    x = np.arange(len(y))
    fig = pl.figure(figsize=(8,6))
    ax = fig.add_subplot(211, axisbg='#FFFFCC')
    ax.plot(x, y, '-')
    ax.set_title('Press left mouse button and drag to test')
    ax2 = fig.add_subplot(212, axisbg='#FFFFCC')
    line2, = ax2.plot(x, y, '-')

    def onselect(xmin, xmax):
        selData.append([xmin, xmax])
        indmin, indmax = np.searchsorted(x, (xmin, xmax))
        indmax = min(len(x)-1, indmax)
        thisx = x[indmin:indmax]
        thisy = y[indmin:indmax]
        line2.set_data(thisx, thisy)
        ax2.set_xlim(thisx[0], thisx[-1])
        ax2.set_ylim(thisy.min(), thisy.max())
        fig.canvas.draw()

    span = SpanSelector(ax, onselect, 'horizontal', useblit=True, rectprops=dict(alpha=0.5, facecolor='red') )
    pl.show()
    return selData
开发者ID:sandrojapa,项目名称:python,代码行数:31,代码来源:DemoTools.py


注:本文中的matplotlib.pylab.show函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。