本文整理汇总了Python中matplotlib.pylab.setp函数的典型用法代码示例。如果您正苦于以下问题:Python setp函数的具体用法?Python setp怎么用?Python setp使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了setp函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: pie
def pie(codes,pounds,filename):
plt.xlabel("Date")
plt.ylabel("Pound")
fig = plt.figure(facecolor='white')
ax = fig.add_axes([0.05, 0.0, 0.80, 0.94])
# Set graph label size
matplotlib.rcParams['font.size'] = 7
# Generate pie chart
patches, texts, autotexts = ax.pie(pounds,labels=codes, autopct='%1.1f%%')
# Don't show percentages on pie chart
proptease = fm.FontProperties()
proptease.set_size('0')
plt.setp(autotexts, fontproperties=proptease)
# Set graph size
F = pylab.gcf()
DefaultSize = F.get_size_inches()
F.set_size_inches( (DefaultSize[0]*0.7, DefaultSize[1]*0.7) )
# Save graph
plt.savefig(filename)
plt.close()
示例2: plot_std_meshlines
def plot_std_meshlines(self, step=0.1):
'''
plot mesh circles for stdv
'''
color = self.std_color
nstdmax = self.stdmax
if self.negative:
axmin = -np.pi / 2.
else:
axmin = 0.
th = np.arange(axmin, np.pi / 2, 0.01)
for ra in np.arange(0, nstdmax + 0.1 * step, step):
self.ax.plot(ra * np.sin(th), ra * np.cos(th), ':', color=color)
if self.normalize:
self.ax.set_ylabel('$\sigma / \sigma_{obs}$', color=color)
self.ax.set_xlabel('$\sigma / \sigma_{obs}$', color=color)
else:
self.ax.set_ylabel('Standard Deviation', color=color)
self.ax.set_xlabel('Standard Deviation', color=color)
xticklabels = plt.getp(plt.gca(), 'xticklabels')
plt.setp(xticklabels, color=color)
yticklabels = plt.getp(plt.gca(), 'yticklabels')
plt.setp(yticklabels, color=color)
示例3: __init__
def __init__(self, ax, collection, mmc, img):
self.colornormalizer = Normalize(vmin=0, vmax=1, clip=False)
self.scat = plt.scatter(img[:, 0], img[:, 1], c=mmc.classvec)
plt.gray()
plt.setp(ax.get_yticklabels(), visible=False)
ax.yaxis.set_tick_params(size=0)
plt.setp(ax.get_xticklabels(), visible=False)
ax.xaxis.set_tick_params(size=0)
self.img = img
self.canvas = ax.figure.canvas
self.collection = collection
#self.alpha_other = alpha_other
self.mmc = mmc
self.prevnewclazz = None
self.xys = collection
self.Npts = len(self.xys)
self.lockedset = set([])
self.lasso = LassoSelector(ax, onselect=self.onselect)#, lineprops = {:'prism'})
self.lasso.disconnect_events()
self.lasso.connect_event('button_press_event', self.lasso.onpress)
self.lasso.connect_event('button_release_event', self.onrelease)
self.lasso.connect_event('motion_notify_event', self.lasso.onmove)
self.lasso.connect_event('draw_event', self.lasso.update_background)
self.lasso.connect_event('key_press_event', self.onkeypressed)
#self.lasso.connect_event('button_release_event', self.onrelease)
self.ind = []
self.slider_axis = plt.axes(slider_coords, visible = False)
self.slider_axis2 = plt.axes(obj_fun_display_coords, visible = False)
self.in_selection_slider = None
newws = list(set(range(len(self.collection))) - self.lockedset)
self.mmc.new_working_set(newws)
self.lasso.line.set_visible(False)
示例4: test2
def test2():
mu = 10.0
sigma = 2.0
x = Variable("x", float)
loggauss = -0.5 * math.log( 2.0 * math.pi * sigma * sigma ) - 0.5 * ((x - mu) ** 2) / (sigma * sigma)
f = Function(
name="foo",
params=(x,),
rettype=float,
expr=loggauss)
engine = create_execution_engine()
module = f.compile(engine)
func_ptr = engine.get_pointer_to_function(module.get_function("foo"))
samples = metropolis_hastings(func_ptr, sigma, 0.0, 1000, 2)
#plt.plot(np.arange(len(samples)), samples)
n, bins, patches = plt.hist(samples[500:], 25, normed=1, histtype='stepfilled')
plt.setp(patches, 'facecolor', 'g', 'alpha', 0.75)
# add a line showing the expected distribution
y = plt.normpdf(bins, mu, sigma)
l = plt.plot(bins, y, 'k--', linewidth=1.5)
plt.show()
示例5: startAnim
def startAnim(x, m, th, Tsim, inter=1, Tstart=0, h=0.002):
# fig, axM = subplo1ts()
# axX = axM.twinx()
fig = figure()
axM = subplot(211)
axX = subplot(212, sharex=axM)
anim = MyAnim(x, m, th, Tsim, inter, Tstart/h, h)
anim.line1, = axM.plot([], [], 'b')
anim.line2, = axX.plot([], [], 'g')
setp(axM.get_xticklabels(), visible=False)
axM.set_xlim([-pi, pi])
axX.set_xlim([-pi, pi])
# axM.set_ylim([0., 3])
# axX.set_ylim([0., 1.])
axM.set_ylim([amin(m), amax(m)])
axX.set_ylim([amin(x), amax(x)])
axM.set_ylabel(r"$m$")
axX.set_ylabel(r"$x$")
axX.set_xlabel(r"$\theta$")
hold(False)
for tl in axM.get_yticklabels():
tl.set_color('b')
for tl in axX.get_yticklabels():
tl.set_color('g')
anim.axM = axM
anim.axX = axX
fig.canvas.mpl_connect('button_press_event', anim.onClick)
a = FuncAnimation(fig, anim, frames=anim.dataGen, init_func=anim.init,
interval=0, blit=True, repeat=True)
show()
return a
示例6: snIaspec_with_medbands
def snIaspec_with_medbands(z = 1.2):
""" plot a SNIa spectrum at the given z, overlaid with medium bands
matching the SN Camille obs set.
:param z:
:return:
"""
import stardust
from demofig import w763,f763,w845,f845,w139,f139
w1a, f1a = stardust.snsed.getsed( sedfile='/usr/local/SNDATA_ROOT/snsed/Hsiao07.dat', day=0 )
w1az = w1a * (1+z)
f1az = f1a / f1a.max() / 2.
ax18 = pl.gca() # subplot(3,2,1)
ax18.plot(w1az, f1az, ls='-', lw=0.7, color='0.5', label='_nolegend_')
ax18.plot(w763, f763, ls='-', color='DarkOrchid',label='F763M')
ax18.plot(w845, f845, ls='-',color='Teal', label='F845M')
ax18.plot(w139, f139, ls='-',color='Maroon', label='F139M')
#ax18.fill_between( w1az, np.where(f763>0.01,f1az,0), color='DarkOrchid', alpha=0.3 )
#ax18.fill_between( w1az, f1az, where=((w1az>13500) & (w1az<14150)), color='teal', alpha=0.3 )
#ax18.fill_between( w1az, f1az, where=((w1az>15000) & (w1az<15700)), color='Maroon', alpha=0.3 )
ax18.text(0.95,0.4, 'SNIa\[email protected] z=%.1f'%(z), color='k',ha='right',va='bottom',fontweight='bold', transform=ax18.transAxes, fontsize='large')
ax18.set_xlim( 6500, 16000 )
pl.setp(ax18.get_xticklabels(), visible=False)
pl.setp(ax18.get_yticklabels(), visible=False)
ax18.text( 7630, 0.65, 'F763M', ha='right', va='center', color='DarkOrchid', fontweight='bold')
ax18.text( 8450, 0.65, 'F845M', ha='center', va='center', color='Teal', fontweight='bold')
ax18.text( 13900, 0.65, 'F139M', ha='left', va='center', color='Maroon', fontweight='bold')
示例7: OnButtonTidyButton
def OnButtonTidyButton(self, event):
# for easy coding
T = self.TreeCtrlMain
s = T.GetSelection()
f = self.GetTreeItemData(s, "figure")
w = self.GetTreeItemData(s, "window")
# set the current figure
pylab.figure(f.number)
# first set the size of the window
w.SetSize([500,500])
# now loop over all the data and get the range
lines = f.axes[0].get_lines()
# we want thick lines
f.axes[0].get_frame().set_linewidth(3.0)
# get the tick lines in one big list
xticklines = f.axes[0].get_xticklines()
yticklines = f.axes[0].get_yticklines()
# set their marker edge width
pylab.setp(xticklines+yticklines, mew=2.0)
# set what kind of tickline they are (outside axes)
for l in xticklines: l.set_marker(matplotlib.lines.TICKDOWN)
for l in yticklines: l.set_marker(matplotlib.lines.TICKLEFT)
# get rid of the top and right ticks
f.axes[0].xaxis.tick_bottom()
f.axes[0].yaxis.tick_left()
# we want bold fonts
pylab.xticks(fontsize=20, fontweight='bold', fontname='Arial')
pylab.yticks(fontsize=20, fontweight='bold', fontname='Arial')
# we want to give the labels some breathing room (1% of the data range)
for label in pylab.xticks()[1]:
label.set_y(-0.02)
for label in pylab.yticks()[1]:
label.set_x(-0.01)
# set the position/size of the axis in the window
f.axes[0].set_position([0.1,0.1,0.8,0.8])
# set the axis labels
f.axes[0].set_title('')
f.axes[0].set_xlabel('')
f.axes[0].set_ylabel('')
# set the position of the legend far away
f.axes[0].legend(loc=[1.2,0])
f.canvas.Refresh()
# autoscale
self.OnButtonAutoscaleButton(None)
示例8: plot
def plot(self,file):
cds = CaseDataset(file, 'bson')
data = cds.data.driver('driver').by_variable().fetch()
cds2 = CaseDataset('../output/therm_mc_20141110173851.bson', 'bson')
data2 = cds2.data.driver('driver').by_variable().fetch()
#temp
temp_boundary_k = data['hyperloop.temp_boundary']
temp_boundary_k.extend(data2['hyperloop.temp_boundary'])
temp_boundary = [((x-273.15)*1.8 + 32) for x in temp_boundary_k]
#histogram
n, bins, patches = plt.hist(temp_boundary, 100, normed=1, histtype='stepfilled')
plt.setp(patches, 'facecolor', 'b', 'alpha', 0.75)
#stats
mean = np.average(temp_boundary)
std = np.std(temp_boundary)
percentile = np.percentile(temp_boundary,99.5)
print "mean: ", mean, " std: ", std, " 99.5percentile: ", percentile
x = np.linspace(50,170,150)
plt.plot(x,mlab.normpdf(x,mean,std), color='black', lw=2)
plt.xlim([60,160])
plt.ylabel('Probability', fontsize=18)
plt.xlabel(u'Equilibrium Temperature, \N{DEGREE SIGN}F', fontsize=18)
#plt.show()
plt.tight_layout()
plt.savefig('../output/histo.pdf', dpi=300)
示例9: interev_mag
def interev_mag(times, mags):
r"""Function to plot interevent times against magnitude for given times
and magnitudes.
:type times: list of datetime
:param times: list of the detection times, must be sorted the same as mags
:type mags: list of float
:param mags: list of magnitudes
"""
l = [(times[i], mags[i]) for i in xrange(len(times))]
l.sort(key=lambda tup: tup[0])
times = [x[0] for x in l]
mags = [x[1] for x in l]
# Make two subplots next to each other of time before and time after
fig, axes = plt.subplots(1, 2, sharey=True)
axes = axes.ravel()
pre_times = []
post_times = []
for i in range(len(times)):
if i > 0:
pre_times.append((times[i] - times[i - 1]) / 60)
if i < len(times) - 1:
post_times.append((times[i + 1] - times[i]) / 60)
axes[0].scatter(pre_times, mags[1:])
axes[0].set_title('Pre-event times')
axes[0].set_ylabel('Magnitude')
axes[0].set_xlabel('Time (Minutes)')
plt.setp(axes[0].xaxis.get_majorticklabels(), rotation=30)
axes[1].scatter(pre_times, mags[:-1])
axes[1].set_title('Post-event times')
axes[1].set_xlabel('Time (Minutes)')
plt.setp(axes[1].xaxis.get_majorticklabels(), rotation=30)
plt.show()
示例10: draw
def draw(self):
data_len = len(self.data)
X = range(data_len)
data = [float(i) for i in self.data]
color = self.cp.get("Colors", item_name("Line", self.num))
line = self.ax.plot(X, data, marker="o", markeredgecolor=color,
markerfacecolor="white", markersize=13, linewidth=5,
markeredgewidth=5, color=color, label=self.cp.get("Labels",
item_name("Legend", self.num)))
max_ax = max(data)*1.1 if data else 0
if max_ax <= 10:
self.ax.set_ylim(-0.1, max_ax)
else:
self.ax.set_ylim(-0.5, max_ax)
self.ax.set_xlim(-1, data_len+1)
if self.mode == "hourly":
self.ax.xaxis.set_ticks((0, 8, 16, 24))
elif self.mode == "daily":
self.ax.xaxis.set_ticks((0, 15, 30))
elif self.mode == "monthly":
self.ax.xaxis.set_ticks((0, 4, 8, 12))
else:
raise Exception("Unknown time interval mode.")
if self.legend:
legend = self.ax.legend(loc=9, mode="expand",
bbox_to_anchor=(0.25, 1.02, 1., .102))
setp(legend.get_frame(), visible=False)
setp(legend.get_texts(), size=int(self.cp.get("Sizes",
"LegendSize")))
示例11: draw_plot
def draw_plot(self):
""" Redraws the plot
"""
# when xmin is on auto, it "follows" xmax to produce a
# sliding window effect. therefore, xmin is assigned after
# xmax.
#
xwin_size = 360
if self.xmax_control.is_auto():
xmax = len(self.data) if len(self.data) > xwin_size else xwin_size
else:
xmax = int(self.xmax_control.manual_value())
if self.xmin_control.is_auto():
xmin = xmax - xwin_size
else:
xmin = int(self.xmin_control.manual_value())
# for ymin and ymax, find the minimal and maximal values
# in the data set and add a mininal margin.
#
# note that it's easy to change this scheme to the
# minimal/maximal value in the current display, and not
# the whole data set.
#
if self.ymin_control.is_auto():
ymin = round(min(self.data), 0) - 1
else:
ymin = int(self.ymin_control.manual_value())
if self.ymax_control.is_auto():
ymax = round(max(self.data), 0) + 1
else:
ymax = int(self.ymax_control.manual_value())
self.axes.set_xbound(lower=xmin, upper=xmax)
self.axes.set_ybound(lower=ymin, upper=ymax)
# anecdote: axes.grid assumes b=True if any other flag is
# given even if b is set to False.
# so just passing the flag into the first statement won't
# work.
#
if self.cb_grid.IsChecked():
self.axes.grid(True, color='gray')
else:
self.axes.grid(False)
# Using setp here is convenient, because get_xticklabels
# returns a list over which one needs to explicitly
# iterate, and setp already handles this.
#
pylab.setp(self.axes.get_xticklabels(),
visible=self.cb_xlab.IsChecked())
self.plot_data.set_xdata(np.arange(len(self.data)))
self.plot_data.set_ydata(np.array(self.data))
self.canvas.draw()
示例12: dateticks
def dateticks(fmt='%Y-%m', **kwargs):
'''setup the date ticks'''
dateticker = ticker.FuncFormatter(lambda numdate, _: num2date(numdate).strftime(fmt))
pylab.gca().xaxis.set_major_formatter(dateticker)
# pylab.gcf().autofmt_xdate()
tmp = dict(rotation=30, ha='right')
tmp.update(kwargs)
pylab.setp(pylab.xticks()[1], **tmp)
示例13: heatmap
def heatmap(data, row_labels, col_labels, ax=None,
cbar_kw={}, cbarlabel="", title = "", **kwargs):
"""
Create a heatmap from a numpy array and two lists of labels.
Arguments:
data : A 2D numpy array of shape (N,M)
row_labels : A list or array of length N with the labels
for the rows
col_labels : A list or array of length M with the labels
for the columns
Optional arguments:
ax : A matplotlib.axes.Axes instance to which the heatmap
is plotted. If not provided, use current axes or
create a new one.
cbar_kw : A dictionary with arguments to
:meth:`matplotlib.Figure.colorbar`.
cbarlabel : The label for the colorbar
All other arguments are directly passed on to the imshow call.
"""
if not ax:
ax = plt.gca()
# Plot the heatmap
im = ax.imshow(data, **kwargs)
ax.set_title(title, pad =50.0)
# create an axes on the right side of ax. The width of cax will be 5%
# of ax and the padding between cax and ax will be fixed at 0.05 inch.
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
cbar = ax.figure.colorbar(im, ax=ax, cax=cax, **cbar_kw)
cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom")
# We want to show all ticks...
ax.set_xticks(np.arange(data.shape[1]))
ax.set_yticks(np.arange(data.shape[0]))
# ... and label them with the respective list entries.
ax.set_xticklabels(col_labels)
ax.set_yticklabels(row_labels)
# Let the horizontal axes labeling appear on top.
ax.tick_params(top=True, bottom=False,
labeltop=True, labelbottom=False)
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=-30, ha="right",
rotation_mode="anchor")
# Turn spines off and create white grid.
# for edge, spine in ax.spines.items():
# spine.set_visible(False)
ax.set_xticks(np.arange(0, data.shape[1] + 1) - 0.5, minor=True)
ax.set_yticks(np.arange(0, data.shape[0] + 1) - 0.5, minor=True)
# ax.grid(which="minor", color="w", linestyle='-', linewidth=3)
# ax.tick_params(which="minor", bottom=False, left=False)
return im, cbar
示例14: create
def create(self, images, x, y, mag, plot=False):
"""Using some input images and a catalog entry, define the pixel aperture for a star."""
# keep track of the basics of this aperture
self.x, self.y, self.mag = x, y, mag
# figure out which label in the labeled image is relevant to this star
label = images['labeled'][np.round(y), np.round(x)]
if label == 0:
self.row, self.col = np.array([np.round(y).astype(np.int)]), np.array([np.round(x).astype(np.int)])
else:
# identify and sort the pixels that might contribute
ok = images['labeled'] == label
okr, okc = ok.nonzero()
sorted = np.argsort(images['stars'][ok]/images['noise'][ok])[::-1]
signal = np.cumsum(images['stars'][ok][sorted])
noise = np.sqrt(np.cumsum(images['noise'][ok][sorted]**2))
snr = signal/noise
mask = ok*0
toinclude = sorted[:np.argmax(snr)+1]
mask[okr[toinclude], okc[toinclude]] = 1
self.row, self.col = okr[toinclude], okc[toinclude]
if plot:
fi = plt.figure('selecting an aperture', figsize=(10,3), dpi=100)
fi.clf()
gs = gridspec.GridSpec(3,2,width_ratios=[1,.1], wspace=0.1, hspace=0.01, top=0.9, bottom=0.2)
ax_line = plt.subplot(gs[:,0])
ax_image = plt.subplot(gs[0,1])
ax_ok = plt.subplot(gs[1,1])
ax_mask = plt.subplot(gs[2,1])
shape = ok.shape
row, col = ok.nonzero()
left, right = np.maximum(np.min(col)-1, 0), np.minimum(np.max(col)+2, shape[1])
bottom, top = np.maximum(np.min(row)-1, 0), np.minimum(np.max(row)+2, shape[1])
kwargs = dict( extent=[left, right, bottom, top], interpolation='nearest')
ax_image.imshow(np.log(images['median'][bottom:top, left:right]), cmap='gray_r', **kwargs)
ax_ok.imshow(ok[bottom:top, left:right], cmap='Blues', **kwargs)
ax_mask.imshow(mask[bottom:top, left:right], cmap='YlOrRd', **kwargs)
for a in [ax_ok, ax_mask, ax_image]:
plt.setp(a.get_xticklabels(), visible=False)
plt.setp(a.get_yticklabels(), visible=False)
ax_line.plot(signal.flatten(), signal.flatten()/noise.flatten(), marker='o', linewidth=1, color='black',alpha=0.5, markersize=10)
ax_line.set_xlabel('Total Star Flux in Aperture')
ax_line.set_ylabel('Total Signal-to-Noise Ratio')
ax_line.set_title('{0:.1f} magnitude star'.format(mag))
plt.draw()
self.input('hmmm?')
self.n = len(self.row)
logger.info('created {0}'.format(self))
示例15: plot_data
def plot_data(hist):
X = np.arange(len(hist))
plt.bar(X, hist.values(), align='center', width=0.5)
plt.xticks(X, hist.keys())
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
ymax = max(hist.values()) + 0.1
plt.ylim(0, ymax)
plt.show()