本文整理汇总了Python中matplotlib.pylab.semilogx函数的典型用法代码示例。如果您正苦于以下问题:Python semilogx函数的具体用法?Python semilogx怎么用?Python semilogx使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了semilogx函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: PSTH
def PSTH(self):
TimeRes = np.array([0.1,0.25,0.5,1,2.5,5.0,10.0,25.0,50.0,100.0])
Projection_PSTH = np.zeros((2,len(TimeRes)))
for i in range(0,len(TimeRes)):
Data_Hist,STA_Hist,Model_Hist,B = Hist(TimeRes[i])
data = Data_Hist/np.linalg.norm(Data_Hist)
sta = STA_Hist/np.linalg.norm(STA_Hist)
model = Model_Hist/np.linalg.norm(Model_Hist)
Projection_PSTH[0,i] = np.dot(data,sta)
Projection_PSTH[1,i] = np.dot(data,model)
import matplotlib.font_manager as fm
plt.figure()
plt.semilogx(TimeRes,Projection_PSTH[0,:],'gray',TimeRes,Projection_PSTH[1,:],'k',
linewidth=3, marker='o', markersize = 12)
plt.xlabel('Time Resolution, ms',fontsize=25)
plt.xticks(fontsize=25)
#plt.axis["right"].set_visible(False)
plt.ylabel('Projection onto PSTH',fontsize=25)
plt.yticks(fontsize=25)
prop = fm.FontProperties(size=20)
plt.legend(('1D model','2D model'),loc='upper left',prop=prop)
plt.tight_layout()
plt.show()
示例2: make_corr1d_fig
def make_corr1d_fig(dosave=False):
corr = make_corr_both_hemi()
lw=2; fs=16
pl.figure(1)#, figsize=(8, 7))
pl.clf()
pl.xlim(4,300)
pl.ylim(-400,+500)
lambda_titles = [r'$20 < \lambda < 30$',
r'$30 < \lambda < 40$',
r'$\lambda > 40$']
colors = ['blue','green','red']
for i in range(3):
corr1d, rcen = corr_1d_from_2d(corr[i])
ipdb.set_trace()
pl.semilogx(rcen, corr1d*rcen**2, lw=lw, color=colors[i])
#pl.semilogx(rcen, corr1d*rcen**2, 'o', lw=lw, color=colors[i])
pl.xlabel(r'$s (Mpc)$',fontsize=fs)
pl.ylabel(r'$s^2 \xi_0(s)$', fontsize=fs)
pl.legend(lambda_titles, 'lower left', fontsize=fs+3)
pl.plot([.1,10000],[0,0],'k--')
s_bao = 149.28
pl.plot([s_bao, s_bao],[-9e9,+9e9],'k--')
pl.text(s_bao*1.03, 420, 'BAO scale')
pl.text(s_bao*1.03, 370, '%0.1f Mpc'%s_bao)
if dosave: pl.savefig('xi1d_3bin.pdf')
示例3: analyze
def analyze(title, x, y, func, func_title):
print('-' * 80)
print(title)
print('x: %s:%s %s' % (list(x.shape), x.dtype, [x.min(), x.max()]))
print('y: %s:%s %s' % (list(y.shape), y.dtype, [y.min(), y.max()]))
popt, pcov = curve_fit(func, x, y)
print('popt=%s' % popt)
print('pcov=\n%s' % pcov)
a, b = popt
print('a=%e' % a)
print('b=%e' % b)
print(func_title(a, b))
xf = np.linspace(x.min(), x.max(), 100)
yf = func(xf, a, b)
print('xf: %s:%s %s' % (list(xf.shape), xf.dtype, [xf.min(), xf.max()]))
print('yf: %s:%s %s' % (list(yf.shape), yf.dtype, [yf.min(), yf.max()]))
plt.title(func_title(a, b))
# plt.xlim(0, x.max())
# plt.ylim(0, y.max())
plt.semilogx(x, y, label='data')
plt.semilogx(xf, yf, label='fit')
plt.legend(loc='best')
plt.savefig('%s.png' % title)
plt.close()
示例4: pore_size_distribution
def pore_size_distribution(network, fig=None):
r"""
Plot the pore and throat size distribution which is the accumulated
volume vs. the diameter in a semilog plot
Parameters
----------
network : OpenPNM Network object
"""
if fig is None:
fig = _plt.figure()
dp = network['pore.diameter']
Vp = network['pore.volume']
dt = network['throat.diameter']
Vt = network['throat.volume']
dmax = max(max(dp), max(dt))
steps = _sp.linspace(0, dmax, 100, endpoint=True)
vals = _sp.zeros_like(steps)
for i in range(0, len(steps)-1):
temp1 = dp > steps[i]
temp2 = dt > steps[i]
vals[i] = sum(Vp[temp1]) + sum(Vt[temp2])
yaxis = vals
xaxis = steps
_plt.semilogx(xaxis, yaxis, 'b.-')
_plt.xlabel('Pore & Throat Diameter (m)')
_plt.ylabel('Cumulative Volume (m^3)')
return fig
示例5: check_models
def check_models(self):
plt.figure('Bandgap narrowing')
Na = np.logspace(12, 20)
Nd = 0.
dn = 1e14
temp = 300.
for author in self.available_models():
BGN = self.update(Na=Na, Nd=Nd, nxc=dn,
author=author,
temp=temp)
if not np.all(BGN == 0):
plt.plot(Na, BGN, label=author)
test_file = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
'Si', 'check data', 'Bgn.csv')
data = np.genfromtxt(test_file, delimiter=',', names=True)
for name in data.dtype.names[1:]:
plt.plot(
data['N'], data[name], 'r--',
label='PV-lighthouse\'s: ' + name)
plt.semilogx()
plt.xlabel('Doping (cm$^{-3}$)')
plt.ylabel('Bandgap narrowing (K)')
plt.legend(loc=0)
示例6: experiment_plot
def experiment_plot( ctr, trials, success ):
"""
Pass in the ctr, trials and success returned
by the `experiment` function and plot
the Cumulative Number of Turns For Each Arm and
the CTR's Convergence Plot side by side
"""
T, K = trials.shape
n = np.arange(T) + 1
fig = plt.figure( figsize = ( 14, 7 ) )
plt.subplot(121)
for i in range(K):
plt.loglog( n, trials[ :, i ], label = "arm {}".format(i + 1) )
plt.legend( loc = "upper left" )
plt.xlabel("Number of turns")
plt.ylabel("Number of turns/arm")
plt.title("Cumulative Number of Turns For Each Arm")
plt.subplot(122)
for i in range(K):
plt.semilogx( n, np.zeros(T) + ctr[i], label = "arm {}'s CTR".format( i + 1 ) )
plt.semilogx( n, ( success[ :, 0 ] + success[ :, 1 ] ) / n, label = "CTR at turn t" )
plt.axis([ 0, T, 0, 1 ] )
plt.legend( loc = "upper left" )
plt.xlabel("Number of turns")
plt.ylabel("CTR")
plt.title("CTR's Convergence Plot")
return fig
示例7: plot
def plot(x, y, semilogx = False):
if semilogx:
pylab.semilogx(x, y)
else:
pylab.plot(x, y)
pylab.grid(True)
pylab.show()
示例8: deg_coll_plots
def deg_coll_plots(dirlist=None, **kwargs):
if kwargs.get("perzeta",False)==True:
zetalist = []
for dirnames in dirlist:
zetalist.append(zetaper(w_dir=dirnames,nrad=kwargs.get('nrad',638)))
#f1 = plt.figure()
plt.xlabel(r'Distance Along Field Line : s [AU]',labelpad=6)
plt.ylabel(r'$\Delta \zeta [\%]$',labelpad=10)
plt.plot(zetalist[0][0],zetalist[0][1],'k-.')
plt.plot(zetalist[1][0],zetalist[1][1],'k--')
plt.plot(zetalist[2][0],zetalist[2][1],'k')
plt.axis([0.0,150.0,0.0,40.0])
plt.minorticks_on()
else:
magalf = np.linspace(19.67,19.67,100)
magfast = np.linspace(12.53,12.53,100)
Msarr = [20.0,25.0,30.0,45.0,50.0,60.0]
alfMs = [20.44,23.27,26.05, 26.84, 28.86,31.45]
fastMs = [15.57,19.94,23.40,24.35,26.03,29.25]
asymMs=[]
Alparr = [0.55,0.60,0.65]
alfAlp =[31.35,23.73,20.93]
fastAlp=[29.25,21.48,17.28]
asymAlp =[]
Denarr =[3.0e-14,5.0e-14,1.0e-13,5.0e-13]
alfDen =[30.30,26.05,22.91,20.42]
fastDen =[27.79,23.40,19.47,15.03]
asymDen=[]
Betarr=[1.0,3.0,5.0]
alfBet =[21.98,25.63,26.05]
fastBet=[16.45,20.68,23.40]
asymBet=[]
#nice_plots()
#f1 = plt.figure()
#ax1 = f1.add_subplot(111)
plt.ylabel(r"Opening Angle : $\phi^\circ$",labelpad=10)
plt.minorticks_on()
if kwargs.get('cplot',False)==True:
dum1 = np.linspace(1.0e-14,1.0e-12,100)
ms1 = plt.semilogx(Denarr,alfDen,'r*')
ms2 = plt.semilogx(Denarr,fastDen,'bo')
plt.xlabel(r"Base Density : $\rho_0$ [g/cm$^{3}$]")
plt.semilogx(dum1,magalf,'r--',dum1,magfast,'b--')
plt.axis([1.0e-14,1.0e-12,10.0,35.0])
# plt.legend([ms1,ms2],[r'Alfven point',r'Fast point'],loc='lower left')
else:
dum1 = np.linspace(10.0,70.0,100)
ms1 = plt.plot(Msarr,alfMs,'k*')
ms2 = plt.plot(Msarr,fastMs,'ko')
plt.xlabel(r"Stellar Mass : $M_{*}$ [$M_{\odot}$]",labelpad=6)
plt.plot(dum1,magalf,'k--',dum1,magfast,'k')
plt.axis([10.0,70.0,10.0,35.0])
示例9: makePlot
def makePlot(xVals, yVals, title, xLabel, yLabel, style, logX=False, logY=False):
"""用给定的标题和标签绘制xVals和yVals
"""
plt.figure()
plt.title(title)
plt.xlabel(xLabel)
plt.ylabel(yLabel)
plt.plot(xVals, yVals, style)
if logX:
plt.semilogx()
if logY:
plt.semilogy()
示例10: plot_ac_to_compare
def plot_ac_to_compare(filter_data_from_spice, coef_b, coef_a, FS, visualise=False):
if visualise:
# get and plot data from spice
w1, h1 = parse_data(filter_data_from_spice)
# get and plot data from coesfs
w, h = signal.freqz(coef_b, coef_a)
plt.figure()
plt.plot(w1, h1)
plt.semilogx(w / max(w) * FS / 2, 20 * np.log10(abs(h)))
plt.xlabel("Frequency [ Hz ]")
plt.ylabel("Amplitude [dB]")
plt.margins(0, 0.1)
plt.grid(which="both", axis="both")
plt.show()
示例11: showErrorBars
def showErrorBars(minExp, maxRxp, numTrials):
"""绘制误差图
"""
means, sds = [], []
xVals = []
for exp in range(minExp, maxRxp+1):
xVals.append(2**exp)
for numFlips in xVals:
fracHeads, mean, sd = flipSim(numFlips, numTrials)
means.append(mean)
sds.append(sd)
plt.errorbar(xVals, means, yerr=2*np.array(sds))
plt.semilogx()
plt.title('Mean Fraction of Heads (' + str(numTrials) + ' Trials)')
plt.xlabel('Number of flips per trial')
plt.ylabel("Fraction of heads & 95% confidence")
示例12: plot_result
def plot_result(fname='results/experiment_run.npy'):
""" Plot beta/density overview
"""
data = np.load(fname)
plt.semilogx(*zip(*data), marker='o', ls='')
plt.title(r'Influence of $\beta$ on spiral-tip density')
plt.xlabel(r'$\beta$')
plt.ylabel(r'spiral-tip density')
img_dir = 'images'
if not os.path.isdir(img_dir):
os.makedirs(img_dir)
plt.savefig(
os.path.join(img_dir, 'beta_overview.png'),
bbox_inches='tight', dpi=300)
示例13: check_klaassen
def check_klaassen():
'''compares to values taken from www.PVlighthouse.com.au'''
a = Mobility('Si')
a.change_model('klaassen1992')
print('''The model disagrees at low tempeature owing to dopant\
ionisation\
I am unsure if mobility should take ionisated dopants or\
non ionisaed\
most likley it should take both, currently it only takes one''')
dn = np.logspace(10, 20)
# dn = np.array([1e14])
Nd = 1e14
Na = 0
folder = os.path.join(
os.path.dirname(__file__), 'Si', 'test_mobility_files')
fnames = [r'Klassen_1e14_dopants.dat',
r'Klassen_1e14_temp-450.dat']
print(os.path.isdir(folder))
for temp, f_name in zip([300, 450], fnames):
plt.figure('Mobility - Klaassen: Deltan at ' + str(temp))
plt.plot(dn, a.hole_mobility(dn, Na, Nd, temp=temp),
'r-',
label='hole-here')
plt.plot(dn, a.electron_mobility(dn, Na, Nd, temp=temp),
'b-',
label='electron-here')
print(f_name)
data = np.genfromtxt(os.path.join(folder, f_name), names=True)
plt.plot(data['deltan'], data['uh'], 'b--',
label='hole - PV-lighthouse')
plt.plot(data['deltan'], data['ue'], 'r--',
label='electron - PV-lighthouse')
plt.legend(loc=0, title='Mobility from')
plt.semilogx()
plt.xlabel(r'$\Delta$n (cm$^{-3}$)')
plt.xlabel(r'Moblity (cm$^2$V$^{-1}$s$^{-1}$)')
示例14: cdf
def cdf(x,color='b',label=" ",lw=1,xlabel="x",ylabel="CDF",logx=False):
""" plot the cumulative density function of x
Parameters
----------
x : np.array (N)
color : string
color symbol
label : string
label
lw: float
linewidth
xlabel : string
xlabel
ylabel : string
ylabel
Examples
--------
.. plot::
:include-source:
>>> from matplotlib.pyplot import *
>>> import pylayers.util.pyutil as pyu
>>> from scipy import *
>>> import matplotlib.pylab as plt
>>> x = randn(100)
>>> pyu.cdf(x)
"""
x = np.sort(x)
n = len(x)
x2 = np.repeat(x, 2)
y2 = np.hstack([0.0, np.repeat(np.arange(1,n) / float(n), 2), 1.0])
if logx:
plt.semilogx(x2,y2,color=color,label=label,linewidth=lw)
else:
plt.plot(x2,y2,color=color,label=label,linewidth=lw)
plt.legend()
plt.xlabel(xlabel)
plt.ylabel(ylabel)
示例15: check_dorkel
def check_dorkel():
'''compares to values taken from www.PVlighthouse.com.au'''
a = Mobility('Si')
a.change_model(author='dorkel1981')
dn = np.logspace(10, 20)
# dn = np.array([1e14])
Nd = 1e14
Na = 0
folder = os.path.join(
os.path.dirname(__file__), 'Si', 'test_mobility_files')
# file name and temp its at
compare = [
['dorkel_1e14_carriers.dat', 300],
['dorkel_1e14_temp-450.dat', 450],
]
for comp in compare:
plt.figure('Mobility - Dorkel: Deltan at ' + str(comp[1]))
plt.plot(dn, a.hole_mobility(dn, Na, Nd, temp=comp[1]),
'r-',
label='hole-here')
plt.plot(dn, a.electron_mobility(dn, Na, Nd, temp=comp[1]),
'b-',
label='electron-here')
data = np.genfromtxt(os.path.join(folder, comp[0]), names=True)
plt.plot(data['deltan'], data['uh'], 'b--',
label='hole - PV-lighthouse')
plt.plot(data['deltan'], data['ue'], 'r--',
label='electron - PV-lighthouse')
plt.legend(loc=0, title='Mobility from')
plt.semilogx()
plt.xlabel(r'$\Delta$n (cm$^{-3}$)')
plt.xlabel(r'Moblity (cm$^2$V$^{-1}$s$^{-1}$)')