本文整理汇总了Python中matplotlib.pylab.plot函数的典型用法代码示例。如果您正苦于以下问题:Python plot函数的具体用法?Python plot怎么用?Python plot使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了plot函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_size_of_c
def plot_size_of_c(size_of_c, path):
xlabel('|C|')
ylabel('Max model size |Ci|')
grid(True)
plot([x+1 for x in range(len(size_of_c))], size_of_c)
savefig(os.path.join(path, 'size_of_c.png'))
close()
示例2: study_sdss_density
def study_sdss_density(hemi='south'):
grid = grid3d(hemi=hemi)
n_data = num_sdss_data_both_catalogs(hemi, grid)
n_rand, weight = num_sdss_rand_both_catalogs(hemi, grid)
n_rand *= ((n_data*weight).sum() / (n_rand*weight).sum())
delta = (n_data - n_rand) / n_rand
delta[weight==0]=0.
fdelta = np.fft.fftn(delta*weight)
power = np.abs(fdelta)**2.
ks = get_wavenumbers(delta.shape, grid.reso_mpc)
kmag = ks[3]
kbin = np.arange(0,0.06,0.002)
ind = np.digitize(kmag.ravel(), kbin)
power_ravel = power.ravel()
power_bin = np.zeros_like(kbin)
for i in range(len(kbin)):
print i
wh = np.where(ind==i)[0]
power_bin[i] = power_ravel[wh].mean()
#pl.clf()
#pl.plot(kbin, power_bin)
from cosmolopy import perturbation
pk = perturbation.power_spectrum(kbin, 0.4, **cosmo)
pl.clf(); pl.plot(kbin, power_bin/pk, 'b')
pl.plot(kbin, power_bin/pk, 'bo')
pl.xlabel('k (1/Mpc)',fontsize=16)
pl.ylabel('P(k) ratio, DATA/THEORY [arb. norm.]',fontsize=16)
ipdb.set_trace()
示例3: transition_related_averaging_run
def transition_related_averaging_run(self, simulation_data, smoothing_kernel_width = 200, sampling_interval = [-50, 150], plot = True ):
"""docstring for transition_related_averaging"""
transition_occurrence_times = self.transition_occurrence_times(simulation_data = simulation_data, smoothing_kernel_width = smoothing_kernel_width)
# make sure only valid transition_occurrence_times survive
transition_occurrence_times = transition_occurrence_times[(transition_occurrence_times > -sampling_interval[0]) * (transition_occurrence_times < (simulation_data.shape[0] - sampling_interval[1]))]
# separated into on-and off periods:
transition_occurrence_times_separated = [transition_occurrence_times[::2], transition_occurrence_times[1::2]]
mean_time_course, std_time_course = np.zeros((2, sampling_interval[1] - sampling_interval[0], 5)), np.zeros((2, sampling_interval[1] - sampling_interval[0], 5))
if transition_occurrence_times_separated[0].shape[0] > 2:
for k in [0,1]:
averaging_interval_times = np.array([transition_occurrence_times_separated[k] + sampling_interval[0],transition_occurrence_times_separated[k] + sampling_interval[1]]).T
interval_data = np.array([simulation_data[avit[0]:avit[1]] for avit in averaging_interval_times])
mean_time_course[k] = interval_data.mean(axis = 0)
std_time_course[k] = (interval_data.std(axis = 0) / np.sqrt(interval_data.shape[0]))
if plot:
f = pl.figure(figsize = (10,8))
for i in range(simulation_data.shape[1]):
s = f.add_subplot(simulation_data.shape[1], 1, 1 + i)
for j in [0,1]:
pl.plot(np.arange(mean_time_course[j].T[i].shape[0]), mean_time_course[j].T[i], ['r--','b--'][j], linewidth = 2.0 )
pl.fill_between(np.arange(mean_time_course[j].shape[0]), mean_time_course[j].T[i] + std_time_course[j].T[i], mean_time_course[j].T[i] - std_time_course[j].T[i], ['r','b'][j], alpha = 0.2)
s.set_title(self.variable_names[i])
pl.draw()
return (mean_time_course, std_time_course)
示例4: check_models
def check_models(self):
'''
Displays a plot of the models against that taken from a
respected website (https://www.pvlighthouse.com.au/)
'''
plt.figure('Intrinsic bandgap')
t = np.linspace(1, 500)
for author in self.available_models():
Eg = self.update(temp=t, author=author, multiplier=1.0)
plt.plot(t, Eg, label=author)
test_file = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
'Si', 'check data', 'iBg.csv')
data = np.genfromtxt(test_file, delimiter=',', names=True)
for temp, name in zip(data.dtype.names[0::2], data.dtype.names[1::2]):
plt.plot(
data[temp], data[name], '--', label=name)
plt.xlabel('Temperature (K)')
plt.ylabel('Intrinsic Bandgap (eV)')
plt.legend(loc=0)
self.update(temp=0, author=author, multiplier=1.01)
示例5: plot_mock
def plot_mock(mock):
plt.clf()
plt.plot(mock['dates'], mock['y'], marker='+', color='blue',
label='data', markersize=9)
plt.plot(mock['dates'], mock['y_without_seasonal'],
color='green', alpha=0.6, linewidth=1,
label='model without seasonal')
示例6: compareFrequencies
def compareFrequencies():
times = generateTimes(sampleFreq, numSamples)
signal = (80.0, 0.1)
coherent = (60.0, 1.0)
incoherent = (60.1, 1.0)
highFNoise = (500.0, 0.01)
timeData = generateTimeDomain(times, [signal, coherent, highFNoise])
timeData2 = generateTimeDomain(times, [signal, incoherent, highFNoise])
#timeData3 = generateTimeDomain(times, [signal, highFNoise])
#timeData = generateTimeDomain(times, [(60.0, 1.0)])
#timeData2 = generateTimeDomain(times, [(61.0, 1.0)])
roi = (0, 20)
freqData = map(toDb, map(dtype, map(absolute, fourier(timeData))))[roi[0]:roi[1]]
freqData2 = map(toDb, map(dtype, map(absolute, fourier(timeData2))))[roi[0]:roi[1]]
#freqData3 = map(toDb, map(dtype, map(absolute, fourier(timeData3))))[roi[0]:roi[1]]
frequencies = generateFFTFrequencies(sampleFreq, numSamples)[roi[0]:roi[1]]
#pylab.subplot(111)
pylab.plot(frequencies, freqData)
#pylab.subplot(112)
pylab.plot(frequencies, freqData2)
#pylab.plot(frequencies, freqData3)
pylab.grid(True)
pylab.show()
示例7: test_simple_gen
def test_simple_gen(self):
self_con = .8
other_con = 0.05
g = self.gen.gen_stoch_blockmodel(min_degree=1, blocks=5, self_con=self_con, other_con=other_con,
powerlaw_exp=2.1, degree_seq='powerlaw', num_nodes=1000, num_links=3000)
deg_hist = vertex_hist(g, 'total')
res = fit_powerlaw.Fit(g.degree_property_map('total').a, discrete=True)
print 'powerlaw alpha:', res.power_law.alpha
print 'powerlaw xmin:', res.power_law.xmin
if len(deg_hist[0]) != len(deg_hist[1]):
deg_hist[1] = deg_hist[1][:len(deg_hist[0])]
print 'plot degree dist'
plt.plot(deg_hist[1], deg_hist[0])
plt.xscale('log')
plt.xlabel('degree')
plt.ylabel('#nodes')
plt.yscale('log')
plt.savefig('deg_dist_test.png')
plt.close('all')
print 'plot graph'
pos = sfdp_layout(g, groups=g.vp['com'], mu=3)
graph_draw(g, pos=pos, output='graph.png', output_size=(800, 800),
vertex_size=prop_to_size(g.degree_property_map('total'), mi=2, ma=30), vertex_color=[0., 0., 0., 1.],
vertex_fill_color=g.vp['com'],
bg_color=[1., 1., 1., 1.])
plt.close('all')
print 'init:', self_con / (self_con + other_con), other_con / (self_con + other_con)
print 'real:', gt_tools.get_graph_com_connectivity(g, 'com')
示例8: plot_corner_posteriors
def plot_corner_posteriors(self, savefile=None, labels=["T1", "R1", "Av", "T2", "R2"]):
'''
Plots the corner plot of the MCMC results.
'''
ndim = len(self.sampler.flatchain[0,:])
chain = self.sampler
samples = chain.flatchain
samples = samples[:,0:ndim]
plt.figure(figsize=(8,8))
fig = corner.corner(samples, labels=labels[0:ndim])
plt.title("MJD: %.2f"%self.mjd)
name = self._get_save_path(savefile, "mcmc_posteriors")
plt.savefig(name)
plt.close("all")
plt.figure(figsize=(8,ndim*3))
for n in range(ndim):
plt.subplot(ndim,1,n+1)
chain = self.sampler.chain[:,:,n]
nwalk, nit = chain.shape
for i in np.arange(nwalk):
plt.plot(chain[i], lw=0.1)
plt.ylabel(labels[n])
plt.xlabel("Iteration")
name_walkers = self._get_save_path(savefile, "mcmc_walkers")
plt.tight_layout()
plt.savefig(name_walkers)
plt.close("all")
示例9: plot_fft
def plot_fft(self,b):
a = len(self.fullfft_dft_py_fc_0.output)
for i in range(0,b):
self.frq.append(i)
plt.plot(self.frq,self.fullfft_dft_py_fc_0.output)
plt.show()
示例10: plot_locking_states
def plot_locking_states(df, meta, num_joints=None):
marker_style = dict(linestyle=':', marker='o', s=100,)
def format_axes(ax):
ax.margins(0.2)
ax.set_axis_off()
if num_joints is None:
num_joints = determine_num_joints(df)
points = np.ones(num_joints)
fig, ax = plt.subplots()
for j in range(num_joints):
ax.text(-1.5, j, "%d" % j)
ax.text(0, -1.5, "time")
for t in df.index:
lock_states = df.loc[t][ [ "LockingState%d" % k for k in range(num_joints) ] ].tolist()
c = ["orange" if l else "k" for l in lock_states]
ax.scatter((t+0.1) * points, range(num_joints), color=c, **marker_style)
format_axes(ax)
ax.set_title('Locking state evolution')
ax.set_xlabel("t")
plt.plot()
示例11: check_isometry
def check_isometry(G, chart, nseeds=100, verbose = 0):
"""
A simple check of the Isometry:
look whether the output distance match the intput distances
for nseeds points
Returns
-------
a scaling factor between the proposed and the true metrics
"""
nseeds = np.minimum(nseeds, G.V)
aux = np.argsort(nr.rand(nseeds))
seeds = aux[:nseeds]
dY = Euclidian_distance(chart[seeds],chart)
dx = G.floyd(seeds)
dY = np.reshape(dY,np.size(dY))
dx = np.reshape(dx,np.size(dx))
if verbose:
import matplotlib.pylab as mp
mp.figure()
mp.plot(dx,dY,'.')
mp.show()
scale = np.dot(dx,dY)/np.dot(dx,dx)
return scale
示例12: fdr
def fdr(p_values=None, verbose=0):
"""Returns the FDR associated with each p value
Parameters
-----------
p_values : ndarray of shape (n)
The samples p-value
Returns
-------
q : array of shape(n)
The corresponding fdr values
"""
p_values = check_p_values(p_values)
n_samples = p_values.size
order = p_values.argsort()
sp_values = p_values[order]
# compute q while in ascending order
q = np.minimum(1, n_samples * sp_values / np.arange(1, n_samples + 1))
for i in range(n_samples - 1, 0, - 1):
q[i - 1] = min(q[i], q[i - 1])
# reorder the results
inverse_order = np.arange(n_samples)
inverse_order[order] = np.arange(n_samples)
q = q[inverse_order]
if verbose:
import matplotlib.pylab as mp
mp.figure()
mp.xlabel('Input p-value')
mp.plot(p_values, q, '.')
mp.ylabel('Associated fdr')
return q
示例13: plot_q
def plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):
"""
Plot a radiallysymmetric Q model.
plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):
r_min=minimum radius [km], r_max=maximum radius [km], dr=radius
increment [km]
Currently available models (model): cem, prem, ql6
"""
import matplotlib.pylab as plt
r = np.arange(r_min, r_max + dr, dr)
q = np.zeros(len(r))
for k in range(len(r)):
if model == 'cem':
q[k] = q_cem(r[k])
elif model == 'ql6':
q[k] = q_ql6(r[k])
elif model == 'prem':
q[k] = q_prem(r[k])
plt.plot(r, q, 'k')
plt.xlim((0.0, r_max))
plt.xlabel('radius [km]')
plt.ylabel('Q')
plt.show()
示例14: check_models
def check_models(self):
plt.figure('Bandgap narrowing')
Na = np.logspace(12, 20)
Nd = 0.
dn = 1e14
temp = 300.
for author in self.available_models():
BGN = self.update(Na=Na, Nd=Nd, nxc=dn,
author=author,
temp=temp)
if not np.all(BGN == 0):
plt.plot(Na, BGN, label=author)
test_file = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
'Si', 'check data', 'Bgn.csv')
data = np.genfromtxt(test_file, delimiter=',', names=True)
for name in data.dtype.names[1:]:
plt.plot(
data['N'], data[name], 'r--',
label='PV-lighthouse\'s: ' + name)
plt.semilogx()
plt.xlabel('Doping (cm$^{-3}$)')
plt.ylabel('Bandgap narrowing (K)')
plt.legend(loc=0)
示例15: existe_croche_blanche_mesure
def existe_croche_blanche_mesure(img,img2,liste,ecart):
for elt in liste:
#Si on a une noire en haut ou (exclusif) en bas
if (not(elt[3]) and elt[4]) or (elt[3] and not(elt[4])):
if elt[3]:
elt.append(existe_croche_haut(img,ecart,elt[0],elt[2]))
else:
elt.append(existe_croche_bas(img,ecart,elt[1],elt[2]))
#on regarde s'il y a d'autres croches
liste = existe_autre_croche(img,liste,ecart)
elt.extend([False,False])
#s'il n'y a pas de noire
elif (not(elt[3]) and not(elt[4])):
#on met le nombre de croches à zéro
elt.append(0)
elt.append(existe_note(img2,ecart,elt[1],elt[2],pc_blan,'magenta'))
elt.append(existe_note(img2,ecart,elt[0],elt[2],pc_blan,'magenta'))
#c'est une barre de mesure (ni noire, ni blanche)
if (not(elt[6]) and not(elt[7])):
#elt.extend('m')
x = [elt[2],elt[2]]
y = [elt[0],elt[1]]
plt.plot(x,y,'b')
return liste