本文整理汇总了Python中matplotlib.pylab.matshow函数的典型用法代码示例。如果您正苦于以下问题:Python matshow函数的具体用法?Python matshow怎么用?Python matshow使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了matshow函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: validate
def validate(X_test, y_test, pipe, title, fileName):
print('Test Accuracy: %.3f' % pipe.score(X_test, y_test))
y_predict = pipe.predict(X_test)
confusion_matrix = np.zeros((9,9))
for p,r in zip(y_predict, y_test):
confusion_matrix[p-1,r-1] = confusion_matrix[p-1,r-1] + 1
print (confusion_matrix)
confusion_normalized = confusion_matrix.astype('float') / confusion_matrix.sum(axis=1)[:, np.newaxis]
print (confusion_normalized)
pylab.clf()
pylab.matshow(confusion_normalized, fignum=False, cmap='Blues', vmin=0.0, vmax=1.0)
ax = pylab.axes()
ax.set_xticks(range(len(families)))
ax.set_xticklabels(families, fontsize=4)
ax.xaxis.set_label_position('top')
ax.xaxis.set_ticks_position("top")
ax.set_yticks(range(len(families)))
ax.set_yticklabels(families, fontsize=4)
pylab.title(title)
pylab.colorbar()
pylab.grid(False)
pylab.grid(False)
pylab.savefig(fileName, dpi=900)
示例2: BreakIllustration
def BreakIllustration(seed=11):
for x in [1 , 2 , 4, 8, 16 , 25, 100]:
pylab.clf()
m4=GenKolmogorovV2(1025, seed, pybnlib.Kol3DBreakLaw(1.0/x) )
pylab.matshow(m4)
pylab.savefig("temp/breakill-%03i.png" % x)
示例3: PlotTurbulenceIllustr
def PlotTurbulenceIllustr(a):
"""
Can generate the grid with
g=kolmogorovutils.GenerateKolmogorov3D( 1025, 129, 129)
a=kolmogorovutils.GridToNumarray(g)
"""
for x in [1,10,100]:
suba= numarray.sum(a[:,:,0:x], axis=2)
suba.transpose()
pylab.clf()
pylab.matshow(suba)
pylab.savefig("temp/turb3d-sum%03i.eps" % x)
for x in [1,10,100]:
for j in [0,1,2]:
suba= numarray.sum(a[:,:200,j*x:(j+1)*x], axis=2)
suba.transpose()
pylab.clf()
pylab.matshow(suba)
pylab.savefig("temp/turb3d-sum%03i-s%i.eps" % (x,j))
示例4: Animate
def Animate(g):
for i in range(1,64,5):
pylab.clf()
x= g[0:i,:,:]
y= numarray.sum(x, axis=0)
pylab.matshow( y)
pylab.savefig("temp/3dturb-%03i.png" % i)
示例5: plot_confusion_matrix
def plot_confusion_matrix(cm, meow_list, name, title):
pylab.clf()
pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
ax = pylab.axes()
ax.set_xticks(range(len(meow_list)))
ax.set_xticklabels(meow_list)
ax.xaxis.set_ticks_position("bottom")
示例6: showKernel
def showKernel(dataOrMatrix, fileName = None, useLabels = True, **args) :
labels = None
if hasattr(dataOrMatrix, 'type') and dataOrMatrix.type == 'dataset' :
data = dataOrMatrix
k = data.getKernelMatrix()
labels = data.labels
else :
k = dataOrMatrix
if 'labels' in args :
labels = args['labels']
import matplotlib
if fileName is not None and fileName.find('.eps') > 0 :
matplotlib.use('PS')
from matplotlib import pylab
pylab.matshow(k)
#pylab.show()
if useLabels and labels.L is not None :
numPatterns = 0
for i in range(labels.numClasses) :
numPatterns += labels.classSize[i]
#pylab.figtext(0.05, float(numPatterns) / len(labels), labels.classLabels[i])
#pylab.figtext(float(numPatterns) / len(labels), 0.05, labels.classLabels[i])
pylab.axhline(numPatterns, color = 'black', linewidth = 1)
pylab.axvline(numPatterns, color = 'black', linewidth = 1)
pylab.axis([0, len(labels), 0, len(labels)])
if fileName is not None :
pylab.savefig(fileName)
pylab.close()
示例7: show_profile
def show_profile(task, fn):
data = zeros((task.Sx, task.Sy))
for i in range(task.Sx):
for j in range(task.Sy):
data[i][j] = fn(task.Gp(i, j, task.Sz / 2))
plb.matshow(data.transpose())
plb.colorbar()
plb.show()
示例8: PlotSTest
def PlotSTest(a):
from matplotlib import pylab
x = numpy.mean(a, axis=0)
x.shape = (int(len(x) ** 0.5), int(len(x) ** 0.5))
pylab.matshow(x)
pylab.colorbar()
示例9: plot_dependency_posterior
def plot_dependency_posterior(df, meta, t, num_joints=None):
if num_joints is None:
num_joints = determine_num_joints(df)
plt.figure()
posterior=np.array([df["Posterior%d"%j].iloc[t] for j in range(num_joints)])
plt.matshow(posterior, interpolation='nearest')
plt.show()
示例10: group_causality
def group_causality(sig_list, condition, freqs, ROI_labels=None,
out_path=None, submount=10):
"""
Make group causality analysis, by evaluating significant matrices across
subjects.
----------
sig_list: list
The path list of individual significant causal matrix.
condition: string
One condition of the experiments.
freqs: list
The list of interest frequency band.
min_subject: string
The subject for the common brain space.
submount: int
Significant interactions come out at least in 'submount' subjects.
"""
print 'Running group causality...'
set_directory(out_path)
sig_caus = []
for f in sig_list:
sig_cau = np.load(f)
print sig_cau.shape[-1]
sig_caus.append(sig_cau)
sig_caus = np.array(sig_caus)
sig_group = sig_caus.sum(axis=0)
plt.close()
for i in xrange(len(sig_group)):
fmin, fmax = freqs[i][0], freqs[i][1]
cau_band = sig_group[i]
# cau_band[cau_band < submount] = 0
cau_band[cau_band < submount] = 0
# fig, ax = pl.subplots()
cmap = plt.get_cmap('hot', cau_band.max()+1-submount)
cmap.set_under('gray')
plt.matshow(cau_band, interpolation='nearest', vmin=submount, cmap=cmap)
if ROI_labels == None:
ROI_labels = np.arange(cau_band.shape[0]) + 1
pl.xticks(np.arange(cau_band.shape[0]), ROI_labels, fontsize=9, rotation='vertical')
pl.yticks(np.arange(cau_band.shape[0]), ROI_labels, fontsize=9)
# pl.imshow(cau_band, interpolation='nearest')
# pl.set_cmap('BlueRedAlpha')
np.save(out_path + '/%s_%s_%sHz.npy' %
(condition, str(fmin), str(fmax)), cau_band)
v = np.arange(submount, cau_band.max()+1, 1)
# cax = ax.scatter(x, y, c=z, s=100, cmap=cmap, vmin=10, vmax=z.max())
# fig.colorbar(extend='min')
plt.colorbar(ticks=v, extend='min')
# pl.show()
plt.savefig(out_path + '/%s_%s_%sHz.png' %
(condition, str(fmin), str(fmax)), dpi=300)
plt.close()
return
示例11: savematrixplot
def savematrixplot(datasetname,tumorname, A, k):
"""
plt.figure("%s_consensus_rank_%d.png" % (tumorname,k))
plt.subplot(211)
plt.matshow(A)
plt.savefig("./" + datasetname + "_results/%s_consensus_rank_%d.png" % (tumorname,k))
"""
mplpl.matshow(A)
mplpl.savefig("./" + datasetname + "_results/%s_consensus_rank_%d.png" % (tumorname,k))
示例12: create_heatmaps
def create_heatmaps(df, key=lambda t: t.minute):
for group, data in df.groupby(df.index.map(key)):
all_mat = np.zeros((100,100), dtype=np.int)
for x, y in zip(data.x, data.y):
all_mat[x, y] += 1
all_mat = all_mat*1.0/len(data)
plt.matshow(all_mat)
plt.title(data.ix[0].name)
print("saving: ", group)
plt.savefig("{:02}.png".format(group))
示例13: plot_grid
def plot_grid(self, name="", save_figure=True):
"""
This plots the 2D representation of the grid
:param name: the name of the image to save
:return:
"""
plt.matshow(self.matrix_grid(), cmap="RdBu", fignum=0)
# Option to save images
if save_figure:
plt.savefig(self.path + name + '.png')
示例14: plotArray
def plotArray( xyarray, colormap=mpl.cm.gnuplot2, normMin=None, normMax=None, showMe=True,
cbar=False, cbarticks=None, cbarlabels=None, plotFileName='arrayPlot.png',
plotTitle='', sigma=None):
"""
Plots the 2D array to screen or if showMe is set to False, to file. If normMin and
normMax are None, the norm is just set to the full range of the array.
"""
if sigma != None:
meanVal = np.mean(accumulatePositive(xyarray))
stdVal = np.std(accumulatePositive(xyarray))
normMin = meanVal - sigma*stdVal
normMax = meanVal + sigma*stdVal
if normMin == None:
normMin = xyarray.min()
if normMax == None:
normMax = xyarray.max()
norm = mpl.colors.Normalize(vmin=normMin,vmax=normMax)
figWidthPt = 550.0
inchesPerPt = 1.0/72.27 # Convert pt to inch
figWidth = figWidthPt*inchesPerPt # width in inches
figHeight = figWidth*1.0 # height in inches
figSize = [figWidth,figHeight]
params = {'backend': 'ps',
'axes.labelsize': 10,
'axes.titlesize': 12,
'text.fontsize': 10,
'legend.fontsize': 10,
'xtick.labelsize': 10,
'ytick.labelsize': 10,
'figure.figsize': figSize}
plt.rcParams.update(params)
plt.matshow(xyarray, cmap=colormap, origin='lower',norm=norm)
if cbar:
if cbarticks == None:
cbar = plt.colorbar(shrink=0.8)
else:
cbar = plt.colorbar(ticks=cbarticks, shrink=0.8)
if cbarlabels != None:
cbar.ax.set_yticklabels(cbarlabels)
plt.ylabel('Row Number')
plt.xlabel('Column Number')
plt.title(plotTitle)
if showMe == False:
plt.savefig(plotFileName)
# else:
# plt.show()
plt.close()
示例15: plot_block_matrix
def plot_block_matrix(labels, tProb_, name='BlockMatrix'):
print "Plot Block Matrix"
indices = np.argsort(labels)
#print indices
block_matrix = tProb_[:,indices]
block_matrix = block_matrix[indices,:]
block_matrix = 1 - block_matrix
#print block_matrix
pylab.matshow(block_matrix, cmap=plt.cm.OrRd)
plt.colorbar()
plt.savefig('./' + name + '.png', dpi=400)
#pylab.show()
plt.close()