本文整理汇总了Python中matplotlib.pylab.ioff函数的典型用法代码示例。如果您正苦于以下问题:Python ioff函数的具体用法?Python ioff怎么用?Python ioff使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ioff函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: print_plot
def print_plot(self, title):
'''
Outputs the current grid to a .png file
'''
plt.ioff()
fig, axs = plt.subplots()
#Default extrema values for x & y dimension
max_x, min_x = 1, -1
max_y, min_y = 1, -1
for brick in self.plane.grid:
#Draw the brick
axs.add_patch(Rectangle((brick[0].x, brick[0].y), brick[0].n, brick[0].h))
#Find extrema
for pos in brick[0].pos:
max_x = max([max_x, pos[0]])
min_x = min([min_x, pos[0]])
max_y = max([max_y, pos[1]])
min_y = min([min_y, pos[1]])
if len(self.plane.grid) > 1:
plt.title('Chromosome - f=%.3f' %self.eval_func())
else:
plt.title('Chromosome - f=000')
#Create buffer around edge of drawing in the graph
axs.set_xlim(min_x - 2.5, max_x + 5.0)
axs.set_ylim(min_y - 2.5, max_y + 5.0)
fig.savefig(str(title) + '.png')
plt.close(fig)
示例2: __init__
def __init__(self, folder, **kwargs):
if not os.path.isdir(os.path.join(folder, 'plots')):
os.mkdir(os.path.join(folder, 'plots'))
plt.ioff()
self.metrics_fig = plt.figure('Metrics')
self.ax2 = self.metrics_fig.add_subplot(111)
self.p1, = self.ax2.plot([], [], 'ro-', label='TEST: Pixel accuracy')
self.p5, = self.ax2.plot([], [], 'rv-', label='TRAIN: Pixel accuracy')
self.p2, = self.ax2.plot([], [], 'bo-', label='TEST: Mean-Per-Class accuracy')
self.p6, = self.ax2.plot([], [], 'bv-', label='TRAIN:Mean-Per-Class accuracy')
self.p3, = self.ax2.plot([], [], 'go-', label='TEST: Mean-Per-Class IU')
self.p7, = self.ax2.plot([], [], 'gv-', label='TRAIN:Mean-Per-Class IU')
self.p4, = self.ax2.plot([], [], 'ko-', label='TEST: Freq. weigh. mean IU')
self.p8, = self.ax2.plot([], [], 'kv-', label='TRAIN:Freq. weigh. mean IU')
plt.xlabel('iterations')
self.handles2, self.labels2 = self.ax2.get_legend_handles_labels()
self.lgd2 = self.ax2.legend(self.handles2, self.labels2, loc='upper center', bbox_to_anchor=(0.5,-0.2))
self.ax2.grid(True)
plt.draw()
示例3: matrix_plot
def matrix_plot(self, matrix, figure_name='matrix_plot.pdf'):
import numpy
from matplotlib import pylab
def _blob(x,y,area,colour):
hs = numpy.sqrt(area) / 2
xcorners = numpy.array([x - hs, x + hs, x + hs, x - hs])
ycorners = numpy.array([y - hs, y - hs, y + hs, y + hs])
pylab.fill(xcorners, ycorners, colour, edgecolor=colour)
reenable = False
if pylab.isinteractive():
pylab.ioff()
pylab.clf()
maxWeight = 2**numpy.ceil(numpy.log(numpy.max(numpy.abs(matrix)))/numpy.log(2))
height, width = matrix.shape
pylab.fill(numpy.array([0,width,width,0]),numpy.array([0,0,height,height]),'white')
pylab.axis('off')
pylab.axis('equal')
for x in xrange(width):
for y in xrange(height):
_x = x+1
_y = y+1
w = matrix[y,x]
if w > 0:
_blob(_x - 0.5, height - _y + 0.5, 0.2,'#0099CC')
elif w < 0:
_blob(_x - 0.5, height - _y + 0.5, 0.2,'#660000')
if reenable:
pylab.ion()
pylab.savefig(figure_name)
示例4: plot_average
def plot_average(filenames, save_plot=True, show_plot=False, dpi=100):
''' Plot Signal average from a list of averaged files. '''
fname = get_files_from_list(filenames)
# plot averages
pl.ioff() # switch off (interactive) plot visualisation
factor = 1e15
for fnavg in fname:
name = fnavg[0:len(fnavg) - 4]
basename = os.path.splitext(os.path.basename(name))[0]
print fnavg
# mne.read_evokeds provides a list or a single evoked based on condition.
# here we assume only one evoked is returned (requires further handling)
avg = mne.read_evokeds(fnavg)[0]
ymin, ymax = avg.data.min(), avg.data.max()
ymin *= factor * 1.1
ymax *= factor * 1.1
fig = pl.figure(basename, figsize=(10, 8), dpi=100)
pl.clf()
pl.ylim([ymin, ymax])
pl.xlim([avg.times.min(), avg.times.max()])
pl.plot(avg.times, avg.data.T * factor, color='black')
pl.title(basename)
# save figure
fnfig = os.path.splitext(fnavg)[0] + '.png'
pl.savefig(fnfig, dpi=dpi)
pl.ion() # switch on (interactive) plot visualisation
示例5: plot
def plot(y, function):
""" Show an animation of Poincare plot.
--- arguments ---
y: A list of initial values
function: function which is argument of Runge-Kutta solver
"""
h = dt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.grid()
time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes)
plt.ion()
for i in range(nmax + 1):
for j in range(nstep):
rk4 = RK.RK4(function)
y = rk4.solve(y, j * h, h)
# -pi <= theta <= pi
while y[0] > pi:
y[0] = y[0] - 2 * pi
while y[0] < -pi:
y[0] = y[0] + 2 * pi
if ntransient <= i < nmax: # <-- draw the poincare plots
plt.scatter(y[0], y[1], s=2.0, marker='o', color='blue')
time_text.set_text('n = %d' % i)
plt.draw()
if i == nmax: # <-- to stop the interactive mode
plt.ioff()
plt.scatter(y[0], y[1], s=2.0, marker='o', color='blue')
time_text.set_text('n = %d' % i)
plt.show()
示例6: __call__
def __call__(self, **params):
p = ParamOverrides(self, params)
fig = plt.figure(figsize=(5, 5))
# This one-liner works in Octave, but in matplotlib it
# results in lines that are all connected across rows and columns,
# so here we plot each line separately:
# plt.plot(x,y,"k-",transpose(x),transpose(y),"k-")
# Here, the "k-" means plot in black using solid lines;
# see matplotlib for more info.
isint = plt.isinteractive() # Temporarily make non-interactive for
# plotting
plt.ioff()
for r, c in zip(p.y[::p.skip], p.x[::p.skip]):
plt.plot(c, r, "k-")
for r, c in zip(np.transpose(p.y)[::p.skip],np.transpose(p.x)[::p.skip]):
plt.plot(c, r, "k-")
# Force last line avoid leaving cells open
if p.skip != 1:
plt.plot(p.x[-1], p.y[-1], "k-")
plt.plot(np.transpose(p.x)[-1], np.transpose(p.y)[-1], "k-")
plt.xlabel('x')
plt.ylabel('y')
# Currently sets the input range arbitrarily; should presumably figure out
# what the actual possible range is for this simulation (which would presumably
# be the maximum size of any GeneratorSheet?).
plt.axis(p.axis)
if isint: plt.ion()
self._generate_figure(p)
return fig
示例7: test1
def test1():
x = [0.5]*3
xbounds = [(-5, 5) for y in x]
GA = GenAlg(fitcalc1, x, xbounds, popMult=100, bitsPerGene=9, mutation=(1./9.), crossover=0.65, crossN=2, direction='min', maxGens=60, hammingDist=False)
results = GA.run()
print "*** DONE ***"
#print results
plt.ioff()
#generate pareto frontier numerically
x1_ = np.arange(-5., 0., 0.05)
x2_ = np.arange(-5., 0., 0.05)
x3_ = np.arange(-5., 0., 0.05)
pfn = []
for x1 in x1_:
for x2 in x2_:
for x3 in x3_:
pfn.append(fitcalc1([x1,x2,x3]))
pfn.sort(key=lambda x:x[0])
plt.figure()
i = 0
for x in results:
plt.scatter(x[1][0], x[1][1], 20, c='r')
plt.scatter([x[0] for x in pfn], [x[1] for x in pfn], 1.0, c='b', alpha=0.1)
plt.xlim([-20,-1])
plt.ylim([-12, 2])
plt.draw()
示例8: kmr_test_plot
def kmr_test_plot(data, k, end_thresh):
from matplotlib.pylab import ion, figure, draw, ioff, show, plot, cla
ion()
fig = figure()
ax = fig.add_subplot(111)
ax.grid(True)
# get k centroids
kmr = kmeans.kmeans_runner(k, end_thresh)
kmr.init_data(data)
print kmr.centroids
plot(data[:,0], data[:,1], 'o')
i = 0
while kmr.stop_flag is False:
kmr.iterate()
#print kmr.centroids, kmr.itr_count
plot(kmr.centroids[:, 0], kmr.centroids[:, 1], 'sr')
time.sleep(.2)
draw()
i += 1
print "N Iterations: %d" % (i)
plot(kmr.centroids[:, 0], kmr.centroids[:, 1], 'g^', linewidth=3)
ioff()
show()
print kmr.itr_count, kmr.centroids
示例9: CalculateG
def CalculateG(distances):
#distances = distances[:len(distances)/2]
x = []
y = []
for key, value in distances.items():
x.append(value[0])
y.append(value[1])
#print(str(x))
#print(str(y))
fig = plt.figure()
ax = fig.add_subplot(111)
p = ax.plot(x, y, 'b')
ax.set_xlabel('t')
ax.set_ylabel('s')
ax.set_title('Simple XY point plot')
pylab.ioff()
plt.show()
def s(t, a):
return 0.5 * a * t**2
params = curve_fit(s, x, y)
#print(str(params[0]))
return params[0][0]
示例10: report
def report():
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
assert_data()
df = session['df']
# For example, user could sumbit 2013-10:2014-02 but we need to make this
# into '2013-10':'2014-10'
if 'idx' in session.keys() and len(session['idx'])>0:
session['_filter']
idx = session['idx']
if idx.find(':') > -1:
lidx, ridx = idx.split(':')
df = df[lidx:ridx]
else:
df = df[idx]
startDate = session['startDate']
endDate = session['endDate']
if startDate != '' and endDate != '':
# Filter the data frame to only be a subset of full time range
startDate = pandas.Timestamp(startDate)
endDate = pandas.Timestamp(endDate)
df = df[startDate:endDate]
figures = []
if 'tags' in session.keys() and len(session['tags'])>0:
figures += GBA.density_cloud_by_tags(df, session['tags'],
silent=True)
if 'pnodes' in session.keys() and len(session['pnodes'])>0:
import matplotlib.pylab as plt
plt.ioff()
pnodes = session['pnodes']
df = GBA.price_at_pnodes(df, pnodes)
cols = ['COST',] + ['pnode_'+p for p in pnodes]
figures.append(df[cols].plot().figure)
figures.append(df[cols].cumsum().plot().figure)
session.drop('tags')
s = '<h1>Figures</h1>'
figures_rendered = []
for n, fig in enumerate(figures):
s+='<img src="plt/%d.png" /><br />' % n
canvas=FigureCanvas(fig)
png_output = StringIO()
canvas.print_png(png_output)
figures_rendered.append(png_output.getvalue())
session['figures'] = figures_rendered
s += '<p><a href="/dashboard">Back to dashboard</a></p><br /><br />'
return s
示例11: plot_model
def plot_model(galaxy, sect = [x1, x2, y1, y2], directory = '/Volumes/VINCE/dwarfs/combined_VCC/figures/'):
'''
A wrapper to plot galfit results, bad pixel mask and other info
INPUT
'galaxy': Single row of the dataframe produced by the procedure the for loop
below
'sect' : Image sector produced by sector(header). It is the same for all
galaxies. Do not need to call sector(header) every time.
'directory': Where to save the results. Directory needs to be created
'''
plt.ioff()
fig, axarr = plt.subplots(2,3)
#fig.suptitle('{}'.format(f))
hdu = fits.open(galaxy['MODEL'])
image = ndimage.gaussian_filter(hdu[1].data, 1)
axarr[0, 0].imshow(image, cmap='gray', norm=LogNorm(), vmin=1, vmax = 50)
axarr[0, 0].set_title('Image')
model = hdu[2].data
axarr[0, 1].imshow(model, cmap='Blues', norm=LogNorm(), vmin=0.01, vmax = 6)
axarr[0, 1].set_title('Model')
residuals = ndimage.gaussian_filter(hdu[3].data, 1)
axarr[1, 0].imshow(residuals, cmap='gray', norm=LogNorm(), vmin=1, vmax = 50)
axarr[1, 0].set_title('Residuals')
x1, x2, y1, y2 = sect[0], sect[1], sect[2], sect[3]
themask = themask = getdata(galaxy['MASK'])[x1:x2,y1:y2]
axarr[1, 1].imshow(themask, cmap='gray', vmin=0, vmax = 1)
axarr[1, 1].set_title('Mask')
axarr[0, 2].text(0.2, 1.0,r'Galaxy: VCC{}'.format(galaxy['ID']), va="center", ha="left")
axarr[0, 2].text(0.2, 0.9,r'mtot $=$ {}'.format(galaxy['mtot']), va="center", ha="left")
axarr[0, 2].text(0.2, 0.8,r'Re $=$ {} pc'.format(galaxy['Re']), va="center", ha="left")
axarr[0, 2].text(0.2, 0.7,r'n $=$ {}'.format(galaxy['n']), va="center", ha="left")
axarr[0, 2].text(0.2, 0.6,r'PA $=$ {}'.format(galaxy['PA']), va="center", ha="left")
axarr[0, 2].text(0.2, 0.5,r'chi2nu $=$ {}'.format(galaxy['chi2nu']), va="center", ha="left")
axarr[0, 2].set_aspect('equal')
axarr[0, 2].axis('off')
axarr[1, 2].set_aspect('equal')
axarr[1, 2].axis('off')
fig.subplots_adjust(hspace=0., wspace = 0.)
plt.setp([a.get_xticklabels() for a in axarr.flatten()], visible=False);
plt.setp([a.get_yticklabels() for a in axarr.flatten()], visible=False);
fig.savefig(directory + '{}.png'.format(f.split('/')[-1]), dpi= 200)
plt.close(fig)
示例12: __init__
def __init__(self,stats):
statsA = stats.expOne
uni = stats.titOne
rc('xtick', labelsize=12)
rc('ytick', labelsize=12)
fig1 = pylab.figure(figsize=(8,5), dpi=100)
self.plotCurve(fig1,statsA,len(statsA[0]),"Coverage" ,1)
pylab.ioff()
#to use if needed
#mytime = '%.2f' % time()
mytime = ""
fig1.savefig(os.environ['TEX']+uni+mytime+'.pdf')
# display plot if required
pylab.show()
示例13: plot
def plot(self, func, interp=True, plotter='imshow'):
import matplotlib as mpl
from matplotlib import pylab as pl
if interp:
lpi = self.interpolator(func)
z = lpi[self.yrange[0]:self.yrange[1]:complex(0, self.nrange),
self.xrange[0]:self.xrange[1]:complex(0, self.nrange)]
else:
y, x = np.mgrid[
self.yrange[0]:self.yrange[1]:complex(0, self.nrange),
self.xrange[0]:self.xrange[1]:complex(0, self.nrange)]
z = func(x, y)
z = np.where(np.isinf(z), 0.0, z)
extent = (self.xrange[0], self.xrange[1],
self.yrange[0], self.yrange[1])
pl.ioff()
pl.clf()
pl.hot() # Some like it hot
if plotter == 'imshow':
pl.imshow(np.nan_to_num(z), interpolation='nearest', extent=extent,
origin='lower')
elif plotter == 'contour':
Y, X = np.ogrid[
self.yrange[0]:self.yrange[1]:complex(0, self.nrange),
self.xrange[0]:self.xrange[1]:complex(0, self.nrange)]
pl.contour(np.ravel(X), np.ravel(Y), z, 20)
x = self.x
y = self.y
lc = mpl.collections.LineCollection(
np.array([((x[i], y[i]), (x[j], y[j]))
for i, j in self.tri.edge_db]),
colors=[(0, 0, 0, 0.2)])
ax = pl.gca()
ax.add_collection(lc)
if interp:
title = '%s Interpolant' % self.name
else:
title = 'Reference'
if hasattr(func, 'title'):
pl.title('%s: %s' % (func.title, title))
else:
pl.title(title)
pl.show()
pl.ion()
示例14: get_rp_as_imagebuf
def get_rp_as_imagebuf(features, width=493, height=352, dpi=72, cmap="jet"):
features = features.reshape(24, 60, order="F")
plt.ioff()
fig = plt.figure(figsize=(int(width / dpi), int(height / dpi)), dpi=dpi)
ax = fig.add_subplot(111)
fig.suptitle("Rhythm Patterns")
ax.imshow(features, origin="lower", aspect="auto", interpolation="nearest", cmap=cmap)
ax.set_xlabel("Mod. Frequency Index")
ax.set_ylabel("Frequency [Bark]")
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format="png")
img_buffer.seek(0)
plt.close()
plt.ion()
return base64.b64encode(img_buffer.getvalue())
示例15: plot
def plot(magfile):
rapert,flux = readaper(magfile)
plt.ioff() #turn off interactive so plots dont pop up
plt.figure(figsize=(8,10)) #this is in inches
plt.xlabel('radius')
plt.ylabel('total flux')
plt.plot(rapert,flux,'bx')
plt.title(magfile,{'fontsize':10})
plt.title("Total flux collected per aperture")
outfile=magfile+".pdf"
plt.savefig(outfile)
print(("saved output figure to %s")%(outfile))