本文整理汇总了Python中matplotlib.pylab.imshow函数的典型用法代码示例。如果您正苦于以下问题:Python imshow函数的具体用法?Python imshow怎么用?Python imshow使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了imshow函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: zsview
def zsview(im, cmap=pl.cm.gray, figsize=(8,5), contours=False, ccolor='r'):
z1, z2 = zscale(im)
pl.figure(figsize=figsize)
pl.imshow(im, vmin=z1, vmax=z2, origin='lower', cmap=cmap, interpolation='none')
if contours:
pl.contour(im, levels=[z2], origin='lower', colors=ccolor)
pl.tight_layout()
示例2: viz_docwordfreq_sidebyside
def viz_docwordfreq_sidebyside(P1, P2, title1='', title2='',
vmax=None, aspect=None, block=False):
from matplotlib import pylab
pylab.figure()
if vmax is None:
vmax = 1.0
P1limit = np.percentile(P1.flatten(), 97)
if P2 is not None:
P2limit = np.percentile(P2.flatten(), 97)
else:
P2limit = P1limit
while vmax > P1limit and vmax > P2limit:
vmax = 0.8 * vmax
if aspect is None:
aspect = float(P1.shape[1])/P1.shape[0]
pylab.subplot(1, 2, 1)
pylab.imshow(P1, aspect=aspect, interpolation='nearest', vmin=0, vmax=vmax)
if len(title1) > 0:
pylab.title(title1)
if P2 is not None:
pylab.subplot(1, 2, 2)
pylab.imshow(P2, aspect=aspect, interpolation='nearest', vmin=0, vmax=vmax)
if len(title2) > 0:
pylab.title(title2)
pylab.show(block=block)
示例3: plot_confusion_matrix
def plot_confusion_matrix(cm, title='', cmap=plt.cm.Blues):
#print cm
#display vehicle, idle, walking accuracy respectively
#display overall accuracy
print type(cm)
# plt.figure(index
plt.imshow(cm, interpolation='nearest', cmap=cmap)
#plt.figure("")
plt.title("Confusion Matrix")
plt.colorbar()
tick_marks = [0,1,2]
target_name = ["driving","idling","walking"]
plt.xticks(tick_marks,target_name,rotation=45)
plt.yticks(tick_marks,target_name,rotation=45)
print len(cm[0])
for i in range(0,3):
for j in range(0,3):
plt.text(i,j,str(cm[i,j]))
plt.tight_layout()
plt.ylabel("Actual Value")
plt.xlabel("Predicted Outcome")
示例4: test_likelihood_evaluator3
def test_likelihood_evaluator3():
tr = template.TemplateRenderCircleBorder()
tr.set_params(14, 6, 4)
t1 = tr.render(0, np.pi/2)
img = np.zeros((240, 320), dtype=np.uint8)
env = util.Environmentz((1.5, 2.0), (240, 320))
le2 = likelihood.LikelihoodEvaluator3(env, tr)
img[(120-t1.shape[0]/2):(120+t1.shape[0]/2),
(160-t1.shape[1]/2):(160+t1.shape[1]/2)] += t1 *255
pylab.subplot(1, 2, 1)
pylab.imshow(img, interpolation='nearest', cmap=pylab.cm.gray)
state = np.zeros(1, dtype=util.DTYPE_STATE)
xvals = np.linspace(0, 2., 100)
yvals = np.linspace(0, 1.5, 100)
res = np.zeros((len(yvals), len(xvals)), dtype=np.float32)
for yi, y in enumerate(yvals):
for xi, x in enumerate(xvals):
state[0]['x'] = x
state[0]['y'] = y
state[0]['theta'] = np.pi / 2.
res[yi, xi] = le2.score_state(state, img)
pylab.subplot(1, 2, 2)
pylab.imshow(res)
pylab.colorbar()
pylab.show()
示例5: show_filters
def show_filters(weights,nweights,d1, d2, nrows, ncols, scale):
"""
Plots the rows of NumPy 2D array ``weights`` as ``d1`` by ``d2`` images.
The images are layed out in a ``nrows`` by ``ncols`` grid.
Option ``scale`` sets the maximum absolute value of elements in ``weights``
that will be plotted (larger values will be clamped to ``scale``, with the
right sign).
"""
perm = range(nweights)
#random.shuffle(perm)
image = -scale*numpy.ones((nrows*(d1+1)-1,ncols*(d2+1)-1),dtype=float)
for i in range(nrows):
for j in range(ncols):
image[(i*d1+i):((i+1)*d1+i),(j*d2+j):((j+1)*d2+j)] = -1*weights[perm[i*ncols + j]].reshape(d1,d2)
for i in range(nrows*(d1+1)-1):
for j in range(ncols*(d2+1)-1):
a = image[i,j]
if a > scale:
image[i,j] = scale
if a < -scale:
image[i,j] = -scale
bordered_image = scale * numpy.ones((nrows*(d1+1)+1,ncols*(d2+1)+1),dtype=float)
bordered_image[1:nrows*(d1+1),1:ncols*(d2+1)] = image
imshow(bordered_image,cmap = cm.Greys,interpolation='nearest')
xticks([])
yticks([])
示例6: showimg
def showimg(self, img):
from matplotlib import pylab as pl
pixels = img.shape[0] / 3
size = int(sqrt(pixels))
img = img.reshape((3,size,size)).swapaxes(0,2).swapaxes(0,1)
pl.imshow(img, interpolation='nearest')
pl.show()
示例7: static_view
def static_view(self, m=0, n=1, NS=100):
"""=============================================================
Grafica Estatica (m,n) Modo normal:
Realiza un grafico de densidad del modo de oscilación (m,n)
de la membrana circular en el tiempo t=0
ARGUMENTOS:
*Numero cuantico angular m
*Numero cuantico radial n
*Resolucion del grid (100 por defecto) NS
============================================================="""
# Grid
XM = np.linspace(-1 * self.R, 1 * self.R, NS)
YM = np.linspace(1 * self.R, -1 * self.R, NS)
# ---------------------------------------------------------------
Z = np.zeros((NS, NS))
for i in xrange(0, NS):
for j in xrange(0, NS):
xd = XM[i]
yd = YM[j]
rd = (xd ** 2 + yd ** 2) ** 0.5
thd = np.arctan(yd / xd)
if xd < 0:
thd = np.pi + thd
if rd < self.R:
Z[j, i] = self.f(rd, thd, 0, m, n)
# ---------------------------------------------------------------
Z[0, 0] = -1
Z[1, 0] = 1
plt.xlabel("X (-R,R)")
plt.ylabel("Y (-R,R)")
plt.title("Circular Membrane: (%d,%d) mode" % (m, n))
plt.imshow(Z)
plt.show()
示例8: plot_valid
def plot_valid(b, s):
from dials.array_family import flex
b = [0.1, 0.2, 0.3, 0.4, 0.5]
s = [0.1, 0.3, 0.5, 0.3, 0.1]
v1 = flex.bool(flex.grid(100, 100))
v2 = flex.bool(flex.grid(100, 100))
v3 = flex.bool(flex.grid(100, 100))
r = [float(ss) / float(bb) for ss, bb in zip(s, b)]
for BB in range(0, 100):
for SS in range(0, 100):
B = -5.0 + BB / 10.0
S = -5.0 + SS / 10.0
V1 = True
V2 = True
V3 = True
for i in range(len(b)):
if B*b[i]+S*s[i] <= 0:
V1 = False
break
for i in range(len(b)):
if B*b[i] <= -S*s[i]:
V2 = False
break
v1[BB,SS] = V1
v2[BB,SS] = V2
from matplotlib import pylab
pylab.imshow(v1.as_numpy_array())
pylab.show()
exit(0)
示例9: locate
def locate(data, plot=False, rectangle=False, total_pooling=16):
# data = cv2.cvtColor(cv2.imread("test1.jpg"), cv2.COLOR_BGR2RGB)
heatmap = 1 - \
heatmodel.predict(data.reshape(
1, data.shape[0], data.shape[1], data.shape[2]))
if plot:
plt.imshow(heatmap[0, :, :, 0])
plt.title("Heatmap")
plt.show()
plt.imshow(heatmap[0, :, :, 0] > 0.99, cmap="gray")
plt.title("Car Area")
plt.show()
if rectangle:
xx, yy = np.meshgrid(
np.arange(heatmap.shape[2]), np.arange(heatmap.shape[1]))
x = (xx[heatmap[0, :, :, 0] > 0.99])
y = (yy[heatmap[0, :, :, 0] > 0.99])
for i, j in zip(x, y):
cv2.rectangle(data, (i * total_pooling, j * total_pooling),
(i * total_pooling + 48, j * total_pooling + 48), 1)
return heatmap, data
示例10: display_data
def display_data(x, **kwargs):
plt.set_cmap('gray')
nrows, ncols = x.shape
example_width = int(kwargs.get('example_width', round(math.sqrt(ncols))))
example_height = int(ncols / example_width)
display_rows = int(math.floor(math.sqrt(nrows)))
display_cols = int(math.ceil(nrows/display_rows))
pad = 1
display_array = -np.ones( (pad + display_rows *(example_height + pad),
pad + display_cols * (example_width + pad)) );
curr_ex = 0;
for j in range(0, display_rows):
for i in range(0, display_cols):
if (curr_ex >= nrows):
break;
max_val = np.max(np.abs(x[curr_ex, :]))
x_splice_start = pad + j*(example_height + pad)
y_splice_start = pad + i*(example_width + pad)
display_array[x_splice_start:(x_splice_start+example_height),
y_splice_start:(y_splice_start+example_width)] = \
np.reshape(x[curr_ex,:], (example_height, example_width)) / max_val
curr_ex += 1
if (curr_ex >= nrows):
break
plt.imshow(display_array)
plt.show()
示例11: plot_prob_for_zero
def plot_prob_for_zero(c, b, s):
from math import log, exp, factorial
from dials.array_family import flex
L = flex.double(flex.grid(100, 100))
MASK = flex.bool(flex.grid(100, 100))
c = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
b = [bb / sum(b) for bb in b]
s = [ss / sum(s) for ss in s]
for BB in range(0, 100):
for SS in range(0, 100):
B = 0 + BB / 10000.0
S = 0 + SS / 40.0
LL = 0
for i in range(len(b)):
if B*b[i] + S*s[i] <= 0:
MASK[BB, SS] = True
LL = -999999
break
else:
LL += c[i]*log(B*b[i]+S*s[i]) - log(factorial(c[i])) - B*b[i] - S*s[i]
L[BB, SS] = LL
index = flex.max_index(L)
i = index % 100
j = index // 100
B = 0 + j / 10000.0
S = 0 + i / 40.0
print flex.max(L), B, S
from matplotlib import pylab
import numpy
im = numpy.ma.masked_array(flex.exp(L).as_numpy_array(), mask=MASK.as_numpy_array())
pylab.imshow(im)
pylab.show()
exit(0)
示例12: reconstructContactMap
def reconstructContactMap(map, datavec):
""" Plots a given vector as a contact map
Parameters
----------
map : np.ndarray 2D
The map from a MetricData object
datavec : np.ndarray
The data we want to plot in a 2D map
"""
map = np.array(map, dtype=int)
atomidx = np.unique(map.flatten()).astype(int)
mask = np.zeros(max(atomidx)+1, dtype=int)
mask[atomidx] = range(len(atomidx))
# Create a new map which maps from vector indexes to matrix indexes
newmap = np.zeros(np.shape(map), dtype=int)
newmap[:, 0] = mask[map[:, 0]]
newmap[:, 1] = mask[map[:, 1]]
contactmap = np.zeros((len(atomidx), len(atomidx)))
for i in range(len(datavec)):
contactmap[newmap[i, 0], newmap[i, 1]] = datavec[i]
contactmap[newmap[i, 1], newmap[i, 0]] = datavec[i]
from matplotlib import pylab as plt
plt.imshow(contactmap, interpolation='nearest', aspect='equal')
plt.colorbar()
#plt.axis('off')
#plt.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='off')
#plt.tick_params(axis='y', which='both', left='off', right='off', labelleft='off')
plt.show()
示例13: PlotMtxError
def PlotMtxError(Corr_w):
max_val = 1
min_val = -0.1
AvCorr = np.sum(Corr_w, axis=0)
dCorr = Corr_w - AvCorr
errCorr = np.log10(np.sqrt(np.einsum("i...,i...", dCorr, dCorr)) / np.absolute(AvCorr) / np.sqrt(Corr_w.shape[0]))
# print errCorr.shape
# print errCorr
plt.rcParams.update({"font.size": 6, "font.weight": "bold"})
for i in xrange(errCorr.shape[0]):
plt.subplot(2, 7, i + 1)
plt.title("SITE " + str(i + 1) + ":: \nHistogram of errors in corr. mtx.")
plt.hist(errCorr[0, :, :].flatten(), 256, range=(min_val, max_val))
plt.xlabel("log_10(sigma)")
plt.ylabel("Count")
plt.subplot(2, 7, i + 7 + 1)
plt.imshow(errCorr[0, :, :], vmin=min_val, vmax=max_val)
cbar = plt.colorbar(shrink=0.25, aspect=40)
cbar.set_label("log_10(sigma)")
plt.set_cmap("gist_yarg")
plt.title("SITE " + str(i + 1) + ":: \nError in corr. matx. values")
plt.xlabel("Site i")
plt.ylabel("Site j")
plt.show()
示例14: func
def func(im):
plt.figure()
plt.title(ti)
if type(im) == list:
im = np.zeros(max_shape)
plt.imshow(im,cmap=cmap,vmin=a_min,vmax=a_max)
plt.axis('off')
示例15: prob_grid
def prob_grid():
im_store=grocery_store_im()
im=im_store.copy()
shape=im.shape
plt.imshow(im)
print shape
nx=shape[0]
ny=shape[1]
print nx*ny
x=np.array([np.arange(nx) for i in xrange(ny)]).flatten()
y=np.array([np.repeat(i,nx) for i in xrange(ny)]).flatten()
imflat=[]
for plane in range(3):
f=(im[0:,0:,plane]).flatten()
print f.shape
imflat.append(f)
xc=nx/2.0
yc=ny/2.0
rad=100.0
mask=np.sqrt((x-xc)**2 + (y-yc)**2 ) < rad
#return mask, x,y,imflat
imflat_g=imflat[0]
imflat_g[mask]=0.5
imflat_g.shape=(nx,ny)
im[0:,0:,0]=imflat_g
plt.imshow(im)