当前位置: 首页>>代码示例>>Python>>正文


Python pylab.gcf函数代码示例

本文整理汇总了Python中matplotlib.pylab.gcf函数的典型用法代码示例。如果您正苦于以下问题:Python gcf函数的具体用法?Python gcf怎么用?Python gcf使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了gcf函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_one_box

def test_one_box(box,tree,graphics=False,callback=None):#,f):
	print 'box',box[0],box[1],':',
	s = tree.search(box)
	print ""
	print "box search:", s
	print "len(s):", len( s )
	boxes = tree.boxes()
	if graphics:
		plt.close()
		gfx.show_uboxes(boxes)
		gfx.show_uboxes(boxes, S=s, col='r')
	if len(s) < ((tree.dim**tree.depth)/2): # dim^depth/2
		t = tree.insert(box)
		if graphics:
			boxes = tree.boxes()
			gfx.show_uboxes(boxes, S=t, col='c')
		print 'ins:',t
 	else:
 		t = tree.remove(s)
		print 'rem:',t

	if graphics:
		gfx.show_box(box,col='g',alpha=0.5)
		if callback:
			plt.gcf().canvas.mpl_connect('button_press_event', callback)
		plt.show()
开发者ID:caja-matematica,项目名称:climate_attractors,代码行数:26,代码来源:test_tree.py

示例2: channel_transform

def channel_transform(fitsfiles, h5file, iref= None):
    """
    Channel Transformation

    Take a list of k2 pixel files (must be from the same
    channel). Find the centroids of each image and solve for the
    linear transformation that takes one scene to another
    """
    nstars = len(fitsfiles)

    # Pull the first file to get length and data type
    fitsfile0 = fitsfiles[0]
    cent0 = fits_to_chip_centroid(fitsfile0)
    channel = get_channel(fitsfile0)
    print "Using channel = %i" % channel

    # Determine the refence frame
    if iref==None:
        dfcent0 = pd.DataFrame(LE(cent0))
        ncad = len(dfcent0)
        med = dfcent0.median()
        dfcent0['dist'] = (
            (dfcent0['centx'] - med['centx'])**2 +
            (dfcent0['centy'] - med['centy'])**2
            )
        dfcent0 = dfcent0.iloc[ncad/4:-ncad/4]
        dfcent0 = dfcent0.dropna(subset=['centx','centy'])
        iref = dfcent0['dist'].idxmin()
    
    print "using reference frame %i" % iref
    assert np.isnan(cent0['centx'][iref])==False,\
        "Must select a valid reference cadence. No nans"

    cent = np.zeros((nstars,cent0.shape[0]), cent0.dtype)
    for i,fitsfile in enumerate(fitsfiles):
        if (i%10)==0:
            print i
        cent[i] = fits_to_chip_centroid(fitsfile)
        channel_i = get_channel(fitsfile)
        assert channel==channel_i,"%i != %i" % (channel, channel_i)

    trans,pnts = imtran.linear_transform(cent['centx'],cent['centy'],iref)
    trans = pd.DataFrame(trans)
    trans = pd.concat([trans,pd.DataFrame(LE(cent0))[['t','cad']]],axis=1)
    trans = trans.to_records(index=False)

    keys = cent.dtype.names
    pnts = mlab.rec_append_fields(pnts,keys,[cent[k] for k in keys])

    if h5file!=None:
        with h5plus.File(h5file) as h5:
            h5['trans'] = trans
            h5['pnts'] = pnts
            
    trans,pnts = read_channel_transform(h5file)
    plot_trans(trans, pnts)
    figpath = h5file[:-3] + '.png'
    plt.gcf().savefig(figpath)
    print "saving %s " % figpath
    return cent
开发者ID:petigura,项目名称:k2phot,代码行数:60,代码来源:channel_transform.py

示例3: make_report

def make_report(event, dataframes, sequence, scores, part, n_iter, report_dir_base):

    # Run through the sequence of decisions.
    df = evaluate_sequence(sequence, dataframes)
    df = pd.concat([df, scores], axis=1)
    ns = ['a', 'b', 'c', 'd', 'e', 'f']
    l_ns = map(lambda x: "l_" + x, ns)
    o_ns = map(lambda x: "o_" + x, ns)

    cols = [u'acc', u'rec', u'avg. gain', u'action', u'gain', 
            u'max gain', #u'num nuggets', u'max nuggets',
            u'min select score', u'next score',] + l_ns + o_ns
    print df[cols]
                
    report_dir = os.path.join(
        report_dir_base, "iter-{}".format(n_iter + 1), part)
    if not os.path.exists(report_dir): os.makedirs(report_dir)

    results_path = os.path.join(report_dir, event.fs_name() + ".tsv")
    with open(results_path, "w") as f:
        df.to_csv(f, index=False, sep="\t")
    df["timestamp"] = df["timestamp"].apply(datetime.utcfromtimestamp)
    df.set_index("timestamp")[["acc", "rec", "avg. gain"]].plot()
    plt.gcf().suptitle(event.title+ " " + learner + " iter-{}".format(n_iter + 1))
    plt.gcf().savefig(os.path.join(report_dir, "{}.png".format(event.fs_name())))
开发者ID:kedz,项目名称:cuttsum,代码行数:25,代码来源:vwlearner.py

示例4: set_axis_0

def set_axis_0():
    pylab.xlabel('time (days)')
    pylab.gcf().subplots_adjust(top=1.0-0.13, bottom=0.2, right=1-0.02,
                                left=0.2)
    a = list(pylab.axis())
    na = [a[0], a[1], 0, a[3]*1.05]
    pylab.axis(na)
开发者ID:AndreaCensi,项目名称:busymail,代码行数:7,代码来源:plot.py

示例5: plotStateSeq

def plotStateSeq(jobname, showELBOInTitle=1, **kwargs):
  global dataName, StateColorMap
  if 'cmap' not in kwargs:
      kwargs['cmap'] = StateColorMap
  axes, zBySeq = bnpy.viz.SequenceViz.plotSingleJob(dataName, jobname,
      showELBOInTitle=showELBOInTitle, **kwargs)
  pylab.gcf().set_size_inches(ZW, ZH);
  return axes
开发者ID:dchouren,项目名称:thesis,代码行数:8,代码来源:PlotUtil.py

示例6: plot_sun_image

def plot_sun_image(img, filename, wavelength=193, title = ''):
    #cmap = plt.get_cmap('sdoaia{}'.format(wavelength))
    cmap = plt.get_cmap('sohoeit195')
    plt.title(title)
    cax = plt.imshow(img,cmap=cmap,origin='lower',vmin=0, vmax=3000)#,vmin=vmin, vmax=vmax)
    plt.gcf().colorbar(cax)
    plt.savefig(filename)
    plt.close("all")
开发者ID:Yukorin5,项目名称:pythonscript,代码行数:8,代码来源:test-eit-plot.py

示例7: XGB_native

def XGB_native(train,test,features,features_non_numeric):
    depth = 13
    eta = 0.01
    ntrees = 8000
    mcw = 3
    params = {"objective": "reg:linear",
              "booster": "gbtree",
              "eta": eta,
              "max_depth": depth,
              "min_child_weight": mcw,
              "subsample": 0.9,
              "colsample_bytree": 0.7,
              "silent": 1
              }
    print "Running with params: " + str(params)
    print "Running with ntrees: " + str(ntrees)
    print "Running with features: " + str(features)

    # Train model with local split
    tsize = 0.05
    X_train, X_test = cross_validation.train_test_split(train, test_size=tsize)
    dtrain = xgb.DMatrix(X_train[features], np.log(X_train[goal] + 1))
    dvalid = xgb.DMatrix(X_test[features], np.log(X_test[goal] + 1))
    watchlist = [(dvalid, 'eval'), (dtrain, 'train')]
    gbm = xgb.train(params, dtrain, ntrees, evals=watchlist, early_stopping_rounds=100, feval=rmspe_xg, verbose_eval=True)
    train_probs = gbm.predict(xgb.DMatrix(X_test[features]))
    indices = train_probs < 0
    train_probs[indices] = 0
    error = rmspe(np.exp(train_probs) - 1, X_test[goal].values)
    print error

    # Predict and Export
    test_probs = gbm.predict(xgb.DMatrix(test[features]))
    indices = test_probs < 0
    test_probs[indices] = 0
    submission = pd.DataFrame({myid: test[myid], goal: np.exp(test_probs) - 1})
    if not os.path.exists('result/'):
        os.makedirs('result/')
    submission.to_csv("./result/dat-xgb_d%s_eta%s_ntree%s_mcw%s_tsize%s.csv" % (str(depth),str(eta),str(ntrees),str(mcw),str(tsize)) , index=False)
    # Feature importance
    if plot:
      outfile = open('xgb.fmap', 'w')
      i = 0
      for feat in features:
          outfile.write('{0}\t{1}\tq\n'.format(i, feat))
          i = i + 1
      outfile.close()
      importance = gbm.get_fscore(fmap='xgb.fmap')
      importance = sorted(importance.items(), key=operator.itemgetter(1))
      df = pd.DataFrame(importance, columns=['feature', 'fscore'])
      df['fscore'] = df['fscore'] / df['fscore'].sum()
      # Plotitup
      plt.figure()
      df.plot()
      df.plot(kind='barh', x='feature', y='fscore', legend=False, figsize=(25, 15))
      plt.title('XGBoost Feature Importance')
      plt.xlabel('relative importance')
      plt.gcf().savefig('Feature_Importance_xgb_d%s_eta%s_ntree%s_mcw%s_tsize%s.png' % (str(depth),str(eta),str(ntrees),str(mcw),str(tsize)))
开发者ID:AdityaRon,项目名称:kaggle-for-fun,代码行数:58,代码来源:rossmann-native-xgb-mine.py

示例8: plot_series

def plot_series(x, y_array, labels):
    for y_arr, label in zip(y_array, labels):
        plt.plot(x, y_arr, label=label)
        plt.xlabel('Datetime')
        plt.ylabel('Demand')
        plt.title('Models of demand using trends and ARMA')
    plt.gcf().set_size_inches(26,20)
    plt.legend()
    plt.show()
开发者ID:racheltho,项目名称:YelpSysRec,代码行数:9,代码来源:demandpredict_main.py

示例9: plotK

def plotK(JDict, xscale='linear', n='', **kwargs):
  paths = JDict.values()
  names = JDict.keys()
  bnpy.viz.PlotTrace.plotJobs(MakePaths(paths,n), names, MakeStyles(names),
                                     yvar='K', tickfontsize=tickfontsize,
                                     density=1, **kwargs)
  set_xscale(xscale)
  pylab.ylim(Klims); pylab.yticks(Kticks);
  pylab.gca().yaxis.grid() # horizontal lines
  pylab.gcf().set_size_inches(W, H);
开发者ID:dchouren,项目名称:thesis,代码行数:10,代码来源:PlotUtil.py

示例10: plotHammingDistVsELBO

def plotHammingDistVsELBO(JDict, n='', **kwargs):
  names, paths = filterJDictForRunsWithELBO(JDict)
  bnpy.viz.PlotTrace.plotJobs(MakePaths(paths, n), names, MakeStyles(names),
                                     yvar='hamming-distance',
                                     xvar='evidence', 
                                     tickfontsize=tickfontsize, 
                                     density=1, **kwargs)
  pylab.ylim(Hlims); 
  pylab.yticks(Hticks);
  pylab.gcf().set_size_inches(W, H);
开发者ID:dchouren,项目名称:thesis,代码行数:10,代码来源:PlotUtil.py

示例11: draw

def draw(x, y, title='K value for kNN'):
    plt.plot(x, y, label='k value')
    plt.title(title)
    plt.xlabel('k')
    plt.ylabel('Score')
    plt.grid(True)
    plt.legend(loc='best', framealpha=0.5, prop={'size':'small'})
    plt.tight_layout(pad=1)
    plt.gcf().set_size_inches(8,4)
    plt.show()
开发者ID:brenden17,项目名称:iris,代码行数:10,代码来源:iris_cv.py

示例12: plotELBO

def plotELBO(JDict, xscale='linear', n='', **kwargs):
  names, paths = filterJDictForRunsWithELBO(JDict)
  bnpy.viz.PlotTrace.plotJobs(MakePaths(paths,n), names, MakeStyles(names),
                                     yvar='evidence', tickfontsize=tickfontsize,
                                     density=1, **kwargs)
  set_xscale(xscale)
  if ELBOlims is not None:
      pylab.ylim(ELBOlims);
  if ELBOticks is not None:
      pylab.yticks(ELBOticks);
  pylab.gca().yaxis.grid() # horizontal lines
  pylab.gcf().set_size_inches(W, H);
开发者ID:dchouren,项目名称:thesis,代码行数:12,代码来源:PlotUtil.py

示例13: matplotlib_make_figure

def matplotlib_make_figure(figsize=(10,7), style='seaborn-dark'):
    try:
        plt.style.use(style)
    except ValueError:
        warning(" matplotlib style %s not found." % style)
        pass

    fig=plt.figure('scatter3d', figsize)
    plt.gcf().set_tight_layout(True)
    ax=fig.add_subplot(111,projection='3d')

    return fig, ax
开发者ID:vlas-sokolov,项目名称:pyscatter-3d,代码行数:12,代码来源:use_matplotlib.py

示例14: plotStateSeq

def plotStateSeq(jobname, showELBOInTitle=1, xticks=None, **kwargs):
  global dataName, StateColorMap
  if 'cmap' not in kwargs:
      kwargs['cmap'] = StateColorMap
  axes, zBySeq = bnpy.viz.SequenceViz.plotSingleJob(dataName, jobname,
      showELBOInTitle=showELBOInTitle, **kwargs)
  pylab.subplots_adjust(top=0.85, bottom=0.1);
  axes[-1].tick_params(axis='both', which='major', labelsize=20)
  if xticks is not None:
      axes[-1].set_xticks(xticks);
  pylab.gcf().set_size_inches(ZW, ZH);
  pylab.draw();
  return axes
开发者ID:dchouren,项目名称:thesis,代码行数:13,代码来源:PlotUtil.py

示例15: plot_episode

def plot_episode(args):
    """Plot an episode plucked from the large h5 database"""
    print "plot_episode"
    # load the data file
    tblfilename = "bf_optimize_mavlink.h5"
    h5file = tb.open_file(tblfilename, mode = "a")
    # get the table handle
    table = h5file.root.v2.evaluations

    # selected episode
    episode_row = table.read_coordinates([int(args.epinum)])
    # compare episodes
    episode_row_1 = table.read_coordinates([2, 3, 22, 46]) # bad episodes
    print "row_1", episode_row_1.shape
    # episode_row = table.read_coordinates([3, 87])
    episode_target = episode_row["alt_target"]
    episode_target_1 = [row["alt_target"] for row in episode_row_1]
    print "episode_target_1.shape", episode_target_1
    episode_timeseries = episode_row["timeseries"][0]
    episode_timeseries_1 = [row["timeseries"] for row in episode_row_1]
    print "row", episode_timeseries.shape
    print "row_1", episode_timeseries_1

    sl_start = 0
    sl_end = 2500
    sl_len = sl_end - sl_start
    sl = slice(sl_start, sl_end)
    pl.plot(episode_timeseries[sl,1], "k-", label="alt", lw=2.)
    print np.array(episode_timeseries_1)[:,:,1]
    pl.plot(np.array(episode_timeseries_1)[:,:,1].T, "k-", alpha=0.2)
    # alt_hold = episode_timeseries[:,0] > 4
    alt_hold_act = np.where(episode_timeseries[sl,0] == 11)
    print "alt_hold_act", alt_hold_act[0].shape, sl_len
    alt_hold_act_min = np.min(alt_hold_act)
    alt_hold_act_max = np.max(alt_hold_act)
    print "min, max", alt_hold_act_min, alt_hold_act_max, alt_hold_act_min/float(sl_len), alt_hold_act_max/float(sl_len),

    # pl.plot(episode_timeseries[sl,0] * 10, label="mode")
    pl.axhspan(-100., 1000,
               alt_hold_act_min/float(sl_len),
               alt_hold_act_max/float(sl_len),
               facecolor='0.5', alpha=0.25)
    pl.axhline(episode_target, label="target")
    pl.xlim((0, sl_len))
    pl.xlabel("Time steps [1/50 s]")
    pl.ylabel("Alt [cm]")
    pl.legend()
    if args.plotsave:
        pl.gcf().set_size_inches((10, 3))
        pl.gcf().savefig("%s.pdf" % (sys.argv[0][:-3]), dpi=300, bbox_inches="tight")
    pl.show()
开发者ID:koro,项目名称:python-multiwii,代码行数:51,代码来源:bf_optimize_mavlink_analyze.py


注:本文中的matplotlib.pylab.gcf函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。