当前位置: 首页>>代码示例>>Python>>正文


Python pylab.figure函数代码示例

本文整理汇总了Python中matplotlib.pylab.figure函数的典型用法代码示例。如果您正苦于以下问题:Python figure函数的具体用法?Python figure怎么用?Python figure使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了figure函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_experiment_stats

def plot_experiment_stats(e):
    sample_data = np.where(e.num_test_genotypes(SAMPLE) > 0)[0]
    c_sample = (100.0 * e.called(SAMPLE)[sample_data]) / e.num_test_genotypes(SAMPLE)[sample_data] + 1e-15
    fill = 100.*e.fill[sample_data]

    snp_data = np.where(e.num_test_genotypes(SNP) > 0)[0]
    c_snp = (100.0 * e.called(SNP)[snp_data]) / e.num_test_genotypes(SNP)[snp_data]
    
    # Call % vs. fill %
    P.figure(1);
    P.clf();
    P.plot(fill, c_sample, 'o')
    P.xlabel('Fill %')
    P.ylabel('Call %')
    P.title('Validation Breakdown by Sample, %.2f%% Deleted. r = %.2f' % 
              (100.0 * e.fraction, np.corrcoef(fill + SMALL_FLOAT, c_sample + SMALL_FLOAT)[0, 1],))

    # Call % vs. SNP
    P.figure(2);
    P.clf();
    P.plot(snp_data, c_snp, 'o')
    P.xlabel('SNP #')
    P.ylabel('Call %')
    P.title('Validation Breakdown by SNP, %.2f%% Deleted' % (100.0 * e.fraction,))
    
    return (np.array([snp_data, c_snp]).transpose(),
            np.array([sample_data, c_sample, fill]).transpose())
开发者ID:orenlivne,项目名称:ober,代码行数:27,代码来源:plots.py

示例2: make_corr1d_fig

def make_corr1d_fig(dosave=False):
    corr = make_corr_both_hemi()
    lw=2; fs=16
    pl.figure(1)#, figsize=(8, 7))
    pl.clf()
    pl.xlim(4,300)
    pl.ylim(-400,+500)    
    lambda_titles = [r'$20 < \lambda < 30$',
                     r'$30 < \lambda < 40$',
                     r'$\lambda > 40$']
    colors = ['blue','green','red']
    for i in range(3):
        corr1d, rcen = corr_1d_from_2d(corr[i])
        ipdb.set_trace()
        pl.semilogx(rcen, corr1d*rcen**2, lw=lw, color=colors[i])
        #pl.semilogx(rcen, corr1d*rcen**2, 'o', lw=lw, color=colors[i])
    pl.xlabel(r'$s (Mpc)$',fontsize=fs)
    pl.ylabel(r'$s^2 \xi_0(s)$', fontsize=fs)    
    pl.legend(lambda_titles, 'lower left', fontsize=fs+3)
    pl.plot([.1,10000],[0,0],'k--')
    s_bao = 149.28
    pl.plot([s_bao, s_bao],[-9e9,+9e9],'k--')
    pl.text(s_bao*1.03, 420, 'BAO scale')
    pl.text(s_bao*1.03, 370, '%0.1f Mpc'%s_bao)
    if dosave: pl.savefig('xi1d_3bin.pdf')
开发者ID:amanzotti,项目名称:vksz,代码行数:25,代码来源:vksz.py

示例3: analyze_categorical_feature

    def analyze_categorical_feature(self, data_frame, feature_name):
        data = FeatureAnalyzer.convert_into_one_hot_representation(data_frame, feature_name)
        data.is_copy = False
        data['label'] = data['label'].astype(int).apply(lambda x: 0 if x == -1 else 1)
        result_dict = {'category': [], 'correlation': [], 'abs_correlation': [], 'fraction': [], 'rate': []}
        for key in data.keys():
            if key != 'label':
                result_dict['category'].append(key)
                key_data = data[['label', key]][data[key] == 1]
                num_engagements = len(key_data[key_data['label'] == 1])
                if len(key_data) > 0:
                    result_dict['correlation'].append(data[[key, 'label']].corr().values[0, 1])
                    result_dict['abs_correlation'].append(abs(result_dict['correlation'][-1]))
                    result_dict['fraction'].append(len(key_data)/float(len(data)))
                    result_dict['rate'].append(num_engagements/float(len(key_data)))
                else:
                    result_dict['correlation'].append(0.0)
                    result_dict['abs_correlation'].append(0.0)
                    result_dict['fraction'].append(0.0)
                    result_dict['rate'].append(0.0)

        plt.figure()
        result = pandas.DataFrame(data=result_dict).sort(columns='abs_correlation', ascending=False)
        fig = result.plot(x='category', y=['correlation', 'fraction', 'rate'], kind='bar', stacked=True, figsize=(len(data)/200, 10)).get_figure()
        fig.set_tight_layout(True)
        png_path = 'Data/' + self.experiment_name + '_' + feature_name + '.png'
        fig.savefig(png_path, dpi=fig.dpi)
开发者ID:abhitopia,项目名称:FeatureEvaluationFrameWork,代码行数:27,代码来源:FeatureAnalyzer.py

示例4: test1

    def test1():
        x = [0.5]*3
        xbounds = [(-5, 5) for y in x]


        GA = GenAlg(fitcalc1, x, xbounds, popMult=100, bitsPerGene=9, mutation=(1./9.), crossover=0.65, crossN=2, direction='min', maxGens=60, hammingDist=False)
        results = GA.run()
        print "*** DONE ***"
        #print results
        plt.ioff()
        #generate pareto frontier numerically
        x1_ = np.arange(-5., 0., 0.05)
        x2_ = np.arange(-5., 0., 0.05)
        x3_ = np.arange(-5., 0., 0.05)

        pfn = []
        for x1 in x1_:
            for x2 in x2_:
                for x3 in x3_:
                    pfn.append(fitcalc1([x1,x2,x3]))

        pfn.sort(key=lambda x:x[0])
        
        plt.figure()
        i = 0
        for x in results:
            plt.scatter(x[1][0], x[1][1], 20, c='r')

        plt.scatter([x[0] for x in pfn], [x[1] for x in pfn], 1.0, c='b', alpha=0.1)
        plt.xlim([-20,-1])
        plt.ylim([-12, 2])
        plt.draw()
开发者ID:pattersoniv,项目名称:FFAS,代码行数:32,代码来源:NGSA.py

示例5: plot_grid_experiment_results

def plot_grid_experiment_results(grid_results, params, metrics):
    global plt
    params = sorted(params)
    grid_params = grid_results.grid_params
    plt.figure(figsize=(8, 6))
    for metric in metrics:
        grid_params_shape = [len(grid_params[k]) for k in sorted(grid_params.keys())]
        params_max_out = [(1 if k in params else 0) for k in sorted(grid_params.keys())]
        results = np.array([e.results.get(metric, 0) for e in grid_results.experiments])
        results = results.reshape(*grid_params_shape)
        for axis, included_in_params in enumerate(params_max_out):
            if not included_in_params:
                results = np.apply_along_axis(np.max, axis, results)

        print results
        params_shape = [len(grid_params[k]) for k in sorted(params)]
        results = results.reshape(*params_shape)

        if len(results.shape) == 1:
            results = results.reshape(-1,1)
        import matplotlib.pylab as plt

        #f.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95)
        plt.imshow(results, interpolation='nearest', cmap=plt.cm.hot)
        plt.title(str(grid_results.name) + " " + metric)

        if len(params) == 2:
            plt.xticks(np.arange(len(grid_params[params[1]])), grid_params[params[1]], rotation=45)
        plt.yticks(np.arange(len(grid_params[params[0]])), grid_params[params[0]])
        plt.colorbar()
        plt.show()
开发者ID:gmum,项目名称:mlls2015,代码行数:31,代码来源:utils.py

示例6: test_flux

    def test_flux(self):
        tol = 150.
        inputcat = catalog.read(os.path.join(self.args.tmp_path, 'ccd_1.cat'))
        pixradius = 3*self.target["psf"]/self.instrument["PIXEL_SCALE"]
        positions = list(zip(inputcat["X_IMAGE"]-1, inputcat["Y_IMAGE"]-1))
        fluxes = image.simple_aper_phot(self.im[1], positions, pixradius)
        sky_background = image.annulus_photometry(self.im[1], positions,
        	pixradius+5, pixradius+8)

        total_bg_pixels = np.shape(image.build_annulus_mask(pixradius+5, pixradius+8, positions[0]))[1]
        total_source_pixels = np.shape(image.build_circle_mask(pixradius,
        	positions[0]))[1]

        estimated_fluxes = fluxes - sky_background*1./total_bg_pixels*total_source_pixels

        estimated_magnitude = image.flux2mag(estimated_fluxes,
        	self.im[1].header['SIMMAGZP'], self.target["exptime"])

        expected_flux = image.mag2adu(17.5, self.target["zeropoint"][0],
        	exptime=self.target["exptime"])

        p.figure()
        p.hist(fluxes, bins=50)
        p.title('Expected flux: {:0.2f}, mean flux: {:1.2f}'.format(expected_flux, np.mean(estimated_fluxes)))
        p.savefig(os.path.join(self.figdir,'Fluxes.png'))

        assert np.all(np.abs(fluxes-expected_flux) < tol)
开发者ID:rfahed,项目名称:extProcess,代码行数:27,代码来源:photometry_test.py

示例7: item_nbr_tendency_finely

def item_nbr_tendency_finely(store_nbr, year, month_start=-1, month_end=-1, graph=True):
    '''
    input
        1. store_nbr = 스토어 번호
        2. year = 연도
        3. month_start = 시작달
        4. month_start = 끝달
        5. graph = 위의 정보에 대한 item_nbr 그래프 출력여부
    
    output
        1. store_nbr, year, month로 filtering한 item_nbr의 pivot 테이블
    '''
    store = df_1[(df_1['store_nbr'] == store_nbr) &
                 (df_1['year'] == year)]

    if month_start != -1:
        if month_end == -1:
            month_end = month_start + 1
        store = store[(month_start <= store['month']) & (store['month'] < month_end)]

    pivot = store.pivot_table(index='item_nbr',
                              columns='date',
                              values='units',
                              aggfunc=np.sum)

    zero_index = pivot == 0
    pivot = pivot[pivot != 0].dropna(axis=0, how='all')
    pivot[zero_index] = 0

    if graph:
        plt.figure(figsize=(12, 8))
        sns.heatmap(pivot, cmap="YlGnBu", annot=True, fmt='.0f')
        plt.show()

    return pivot
开发者ID:atyams,项目名称:kaggle-walmart-sales-in-stormy-weather,代码行数:35,代码来源:jw_package.py

示例8: item_nbr_tendency

def item_nbr_tendency(store_nbr):
    '''
    input : store_nbr
    output : graph representing units groupped by each year, each month
    '''
    store = df_1[df_1['store_nbr'] == store_nbr]

    pivot = store.pivot_table(index=['year','month'],columns='item_nbr',values='units',aggfunc=np.sum)
    zero_index = pivot==0
    pivot = pivot[pivot!=0].dropna(axis=1,how='all')
    pivot[zero_index]=0
    
    
    pivot_2012 = pivot.loc[2012]
    pivot_2013 = pivot.loc[2013]
    pivot_2014 = pivot.loc[2014]
    
    plt.figure(figsize=(12,8))
    plt.subplot(131)
    sns.heatmap(pivot_2012,cmap="YlGnBu", annot = True, fmt = '.0f')
    plt.subplot(132)
    sns.heatmap(pivot_2013,cmap="YlGnBu", annot = True, fmt = '.0f')
    plt.subplot(133)
    sns.heatmap(pivot_2014,cmap="YlGnBu", annot = True, fmt = '.0f')
    plt.show()
开发者ID:atyams,项目名称:kaggle-walmart-sales-in-stormy-weather,代码行数:25,代码来源:jw_package.py

示例9: flipPlot

def flipPlot(minExp, maxExp):
    """假定minEXPy和maxExp是正整数且minExp<maxExp
    绘制出2**minExp到2**maxExp次抛硬币的结果
    """
    ratios = []
    diffs = []
    aAxis = []
    for i in range(minExp, maxExp+1):
        aAxis.append(2**i)
    for numFlips in aAxis:
        numHeads = 0
        for n in range(numFlips):
            if random.random() < 0.5:
                numHeads += 1
        numTails = numFlips - numHeads
        ratios.append(numHeads/numFlips)
        diffs.append(abs(numHeads-numTails))
    plt.figure()
    ax1 = plt.subplot(121)
    plt.title("Difference Between Heads and Tails")
    plt.xlabel('Number of Flips')
    plt.ylabel('Abs(#Heads - #Tails)')
    ax1.semilogx(aAxis, diffs, 'bo')
    ax2 = plt.subplot(122)
    plt.title("Heads/Tails Ratios")
    plt.xlabel('Number of Flips')
    plt.ylabel("#Heads/#Tails")
    ax2.semilogx(aAxis, ratios, 'bo')
    plt.show()
开发者ID:xiaohu2015,项目名称:ProgrammingPython_notes,代码行数:29,代码来源:chapter12.py

示例10: handle

    def handle(self, *args, **options):
        try:
            from matplotlib import pylab as pl
            import numpy as np
        except ImportError:
            raise Exception('Be sure to install requirements_scipy.txt before running this.')

        all_names_and_counts = RawCommitteeTransactions.objects.all().values('attest_by_name').annotate(total=Count('attest_by_name')).order_by('-total')
        all_names_and_counts_as_tuple_and_sorted = sorted([(row['attest_by_name'], row['total']) for row in all_names_and_counts], key=lambda row: row[1])
        print "top ten attestors:  (name, number of transactions they attest for)"
        for row in all_names_and_counts_as_tuple_and_sorted[-10:]:
            print row

        n_bins = 100
        filename = 'attestor_participation_distribution.png'

        x_max = all_names_and_counts_as_tuple_and_sorted[-31][1]  # eliminate top outliers from hist
        x_min = all_names_and_counts_as_tuple_and_sorted[0][1]

        counts = [row['total'] for row in all_names_and_counts]
        pl.figure(1, figsize=(18, 6))
        pl.hist(counts, bins=np.arange(x_min, x_max, (float(x_max)-x_min)/100) )
        pl.title('Histogram of Attestor Participation in RawCommitteeTransactions')
        pl.xlabel('Number of transactions a person attested for')
        pl.ylabel('Number of people')
        pl.savefig(filename)
开发者ID:avaleske,项目名称:hackor,代码行数:26,代码来源:graph_dist_of_attestor_contribution_in_CommTrans.py

示例11: check_models

    def check_models(self):
        plt.figure('Bandgap narrowing')
        Na = np.logspace(12, 20)
        Nd = 0.
        dn = 1e14
        temp = 300.

        for author in self.available_models():
            BGN = self.update(Na=Na, Nd=Nd, nxc=dn,
                              author=author,
                              temp=temp)

            if not np.all(BGN == 0):
                plt.plot(Na, BGN, label=author)

        test_file = os.path.join(
            os.path.dirname(os.path.realpath(__file__)),
            'Si', 'check data', 'Bgn.csv')

        data = np.genfromtxt(test_file, delimiter=',', names=True)

        for name in data.dtype.names[1:]:
            plt.plot(
                data['N'], data[name], 'r--',
                label='PV-lighthouse\'s: ' + name)

        plt.semilogx()
        plt.xlabel('Doping (cm$^{-3}$)')
        plt.ylabel('Bandgap narrowing (K)')

        plt.legend(loc=0)
开发者ID:MK8J,项目名称:QSSPL-analyser,代码行数:31,代码来源:bandgap_narrowing.py

示例12: XXtest5_regrid

    def XXtest5_regrid(self):
        srcF = cdms2.open(sys.prefix + \
                              '/sample_data/so_Omon_ACCESS1-0_historical_r1i1p1_185001-185412_2timesteps.nc')
        so = srcF('so')[0, 0, ...]
        clt = cdms2.open(sys.prefix + '/sample_data/clt.nc')('clt')
        dstData = so.regrid(clt.getGrid(), 
                            regridTool = 'esmf', 
                            regridMethod='conserve')

        if self.pe == 0:
            dstDataMask = (dstData == so.missing_value)
            dstDataFltd = dstData * (1 - dstDataMask)
            zeroValCnt = (dstData == 0).sum()
            if so.missing_value > 0:
                dstDataMin = dstData.min()
                dstDataMax = dstDataFltd.max()
            else:
                dstDataMin = dstDataFltd.min()
                dstDataMax = dstData.max()
                zeroValCnt = (dstData == 0).sum()
            print 'Number of zero valued cells', zeroValCnt
            print 'min/max value of dstData: %f %f' % (dstDataMin, dstDataMax)                   
            self.assertLess(dstDataMax, so.max())
            if False:
                pylab.figure(1)
                pylab.pcolor(so, vmin=20, vmax=40)
                pylab.colorbar()
                pylab.title('so')
                pylab.figure(2)
                pylab.pcolor(dstData, vmin=20, vmax=40)
                pylab.colorbar()
                pylab.title('dstData')
开发者ID:NCPP,项目名称:uvcdat-devel,代码行数:32,代码来源:testEsmfSalinity.py

示例13: plot_waveforms

def plot_waveforms(time,voltage,APTimes,titlestr):
    """
    plot_waveforms takes four arguments - the recording time array, the voltage
    array, the time of the detected action potentials, and the title of your
    plot.  The function creates a labeled plot showing the waveforms for each
    detected action potential
    """
   
    plt.figure()
   
    ## Your Code Here 
    indices = []
    
    for x in range(len(APTimes)):
        for i in range(len(time)):
            if(time[i]==APTimes[x]):
                indices.append(i)
            

    ##print indices
    Xval = np.linspace(-.003,.003,200)
    print len(Xval)
    for x in range(len(APTimes)):
        plt.plot(Xval, voltage[indices[x]-100:indices[x]+100])
        plt.title(titlestr)
        plt.xlabel('Time (s)')
        plt.ylabel('Voltage (uV)')
        plt.hold(True)

    
    
    plt.show()
开发者ID:cbuscaron,项目名称:NeuralData,代码行数:32,代码来源:problem_set1.py

示例14: visualization2

    def visualization2(self, sp_to_vis=None):
        if sp_to_vis:
            species_ready = list(set(sp_to_vis).intersection(self.all_sp_signatures.keys()))
        else:
            raise Exception('list of driver species must be defined')

        if not species_ready:
            raise Exception('None of the input species is a driver')

        for sp in species_ready:
            # Setting up figure
            plt.figure()
            plt.subplot(313)

            mon_val = OrderedDict()
            signature = self.all_sp_signatures[sp]
            for idx, mon in enumerate(list(set(signature))):
                if mon[0] == 'C':
                    mon_val[self.all_comb[sp][mon] + (-1,)] = idx
                else:
                    mon_val[self.all_comb[sp][mon]] = idx

            mon_rep = [0] * len(signature)
            for i, m in enumerate(signature):
                if m[0] == 'C':
                    mon_rep[i] = mon_val[self.all_comb[sp][m] + (-1,)]
                else:
                    mon_rep[i] = mon_val[self.all_comb[sp][m]]
            # mon_rep = [mon_val[self.all_comb[sp][m]] for m in signature]

            y_pos = numpy.arange(len(mon_val.keys()))
            plt.scatter(self.tspan[1:], mon_rep)
            plt.yticks(y_pos, mon_val.keys())
            plt.ylabel('Monomials', fontsize=16)
            plt.xlabel('Time(s)', fontsize=16)
            plt.xlim(0, self.tspan[-1])
            plt.ylim(0, max(y_pos))

            plt.subplot(312)

            for name in self.model.odes[sp].as_coefficients_dict():
                mon = name
                mon = mon.subs(self.param_values)
                var_to_study = [atom for atom in mon.atoms(sympy.Symbol)]
                arg_f1 = [numpy.maximum(self.mach_eps, self.y[str(va)][1:]) for va in var_to_study]
                f1 = sympy.lambdify(var_to_study, mon)
                mon_values = f1(*arg_f1)
                mon_name = str(name).partition('__')[2]
                plt.plot(self.tspan[1:], mon_values, label=mon_name)
            plt.ylabel('Rate(m/sec)', fontsize=16)
            plt.legend(bbox_to_anchor=(-0.1, 0.85), loc='upper right', ncol=1)

            plt.subplot(311)
            plt.plot(self.tspan[1:], self.y['__s%d' % sp][1:], label=parse_name(self.model.species[sp]))
            plt.ylabel('Molecules', fontsize=16)
            plt.legend(bbox_to_anchor=(-0.15, 0.85), loc='upper right', ncol=1)
            plt.suptitle('Tropicalization' + ' ' + str(self.model.species[sp]))

            # plt.show()
            plt.savefig('s%d' % sp + '.png', bbox_inches='tight', dpi=400)
开发者ID:LoLab-VU,项目名称:tropical,代码行数:60,代码来源:max_plus.py

示例15: _fig_density

def _fig_density(sweight, surweight, pval, nlm):
    """
    Plot the histogram of sweight across the image
    and the thresholds implied by the surrogate model (surweight)
    """
    import matplotlib.pylab as mp
    # compute some thresholds
    nlm = nlm.astype('d')
    srweight = np.sum(surweight,1)
    srw = np.sort(srweight)
    nitem = np.size(srweight)
    thf = srw[int((1-min(pval,1))*nitem)]
    mnlm = max(1,nlm.mean())
    imin = min(nitem-1,int((1.-pval/mnlm)*nitem))
    
    thcf = srw[imin]
    h,c = np.histogram(sweight,100)
    I = h.sum()*(c[1]-c[0])
    h = h/I
    h0,c0 = np.histogram(srweight,100)
    I0 = h0.sum()*(c0[1]-c0[0])
    h0 = h0/I0
    mp.figure(1)
    mp.plot(c,h)
    mp.plot(c0,h0)
    mp.legend(('true histogram','surrogate histogram'))
    mp.plot([thf,thf],[0,0.8*h0.max()])
    mp.text(thf,0.8*h0.max(),'p<0.2, uncorrected')
    mp.plot([thcf,thcf],[0,0.5*h0.max()])
    mp.text(thcf,0.5*h0.max(),'p<0.05, corrected')
    mp.savefig('/tmp/histo_density.eps')
    mp.show()
开发者ID:cindeem,项目名称:nipy,代码行数:32,代码来源:structural_bfls.py


注:本文中的matplotlib.pylab.figure函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。